Leptonic HiggsPortal to the Dark Side

Hock Seng Goh (UC Berkeley)

Joint Argonne & IIT workshop 2009

arXiv:0902.0814 with L. Hall and P. Kumar

Dark matter exist !

(Modified Gravity is always a possibility although it has become harder)

Fermi - 0905.0025

Fermi - 0905.0025

Fermi - 0905.0025

The observation could mean

- We need a new understanding of the background
- We have observed close by pulsars
- We have observed dark matter

Fermi - 0905.0025

Fermi - 0905.0025

- Dark matter mass \sim multi TeV
- Large annihilation cross section

• Like lepton better than quark

- Dark matter mass \sim multi TeV
- Large annihilation cross section
 - Sommerfeld enhancement
 - Non-thermal production
 - Asymmetric dark matter
 - Decay
- Like lepton better than quark

- Dark matter mass \sim multi TeV
- Large annihilation cross section
 - Sommerfeld enhancement
 - Non-thermal production
 - Asymmetric dark matter
 - Decay
- Like lepton better than quark
 - Hadron heavier than lepton --- kinematic
 - "Leptonic" dark sector --- symmetry

- Basic idea of Leptonic Higgs messenger
- Fitting to observation $-e, \gamma, \nu$
- LHC signals ?? Higgs searches + τ Physics
- Some explicit models
- Conclusion

General picture if DM is SM

- Silveira & Zee

Higgs portal

- March-Russell etc.

General picture if DM is SM

- Silveira & Zee

- March-Russell etc.

Many other ideas on leptonic symmetry

Spin :

Where lepton have larger charge. Ex : hyper charge, B-L, l , $\mu\text{-}\tau,$

(Complete list !)

2-Higgs-doublet model

Inert Higgs			SUSY		???		Leptonic Higgs		
Models		I		II		III		IV	
	VEV	A_f	VEV	A_f	VEV	A,	VEV	A_f	
[<i>u</i>]	2	$\cot\beta$	2	$\cot\beta$	2	$\cot\beta$	2	$\cot\beta$	
d	2	$-\cot\beta$	1	tanβ	1	tanβ	2	$-\cot\beta$	
v									
[1]	2	$-\cot\beta$	1	tanβ	2	$-\cot\beta$	1	tan <i>β</i>	

Barger, Hewett, Phillips Phys.Rev.D41:3421,1990.

Leptonic Higgs : Type IV 2HDM

$$Q_i H_q u_j + Q_i H_q d_j + L_i H_l e_j + f(H_l) O_{dark}$$

Has a Chiral Leptonic symmetry (parity) where

$$L = (-, +)$$
 $e = (+, -)$ $H_l = (-, -)$

Or other topology and different leptonic final state depending on dark matter model

H_q and H_l unavoidable mix.

$$H_q^0 = v_q + h_q + ia_q$$
 $H_l^0 = v_l + h_l + ia_l$

$$A = a_l \cos \beta - a_q \sin \beta \qquad Z_P = a_l \sin \beta + a_q \cos \beta$$
$$H = h_l \cos \alpha - h_q \sin \alpha \qquad h = h_l \sin \alpha + h_q \cos \alpha$$

$$\tan\beta = \frac{v_l}{v_q} \neq 0$$

Leptonic Higgs $\equiv tan \beta \ll 1$

$$\Rightarrow \tan \alpha \propto v_l = 1$$

Leptonic Higgs

• 2HDM with chiral leptonic symmetry

•
$$v_l = v_q$$

(Technically natural as it can be induced by $\mu^2 H_q^{\dagger} H_l$)

• leptonic Higgs mass is constrained

Constraint on the parameters

$$60 \sim \frac{2m_Z}{3} < m_A < 2m_W + m_Z \sim 250$$
$$45 \sim \frac{m_Z}{2} < m_H < 2m_W \sim 160$$

 m_A

Fitting Observations

Injection spectrum :

 $<\sigma v >= B < \sigma v >_{thermal}$

We can fit the data with 2 parameter : mx and B (not sensitive on leptonic Higgs mass)

DM with M = 3. TeV that annihilates into $\tau^+ \tau^-$ with $\sigma v = 2.0 \times 10^{-22}$ cm³/s

P. Meade, M. Papucci, A Strumia, T. Volansky arXiv:0905.0480

Photon and neutrino

Dominated by π^0 decay.

other from

- final state radiation
- inverse compton scattering
- synchrotron radiation

Lot of neutrino

Resolve the tension by requiring $B_{total}^{e} = \# B_{total}^{v}$ and/or Isothemal DM profile

Decaying dark matter is safe from these constraints

(quite strong from neutrino but still safe)

Summary from observation

Annihilating DM

• We need a total boost factor $\sim 10,000$

(Sommerfeeld :10 ; local clump :10 ; B=100)

- DM mass is $\sim 4 \text{ TeV}$
- Tension from gamma ray and neutrino
- Need Non-thermal production, or something else

Decaying DM

- Life-time ~ 10^{26} s (understood by spontaneously broken parity)
- DM mass is $\sim 4 8$ TeV (depends on model)
- Safe from gamma ray and neutrino constraints but that from neutrino remain strong.
- Thermal production ??

Leptonic Higgs phenomenology At LHC

(Brooks talk tomorrow)

There are also charged Higgs that we will not discuss here

Constraint on the parameters

$$60 \sim \frac{2m_Z}{3} < m_A < 2m_W + m_Z \sim 250$$
$$45 \sim \frac{m_Z}{2} < m_H < 2m_W \sim 160$$

 m_A

Constraint on the parameters

$$60 \sim \frac{2m_Z}{3} < m_A < 2m_W + m_Z \sim 250$$
$$45 \sim \frac{m_Z}{2} < m_H < 2m_W \sim 160$$

Imply non-decoupling at the LHC

 m_A

Characteristic of leptonic Higgs :

Potential LHC signals

• "SM" Higgs searches can change

(enhanced by larger tau yukawa, suppressed by small L-Q mixing)

(If the quartic coupling is large)

• New states A, H

(dependent only on mass of A, H)

350 fb for 100 GeV $\,$ H, A $\,$

Can also have

It could happen that τ physics determine the fate of the Higgs searches !

We will need : efficient τ -tagging reconstruction τ momentum

Note : from other talks at Pheno, trading a τ -pair with a μ -pair helps due to much smaller BG.

 $h \rightarrow 2\tau$ and $H \rightarrow 2\tau$ (mass ~ 115 – 145 GeV)

$$\begin{split} \sigma_{VBF}(h) \times BR(h \to \bar{\tau}\tau) &\approx \left[\sigma_{VBF}^{SM} \times BR(h_{SM} \to \bar{\tau}\tau)\right] \frac{\left(\frac{\sin^2 \alpha}{\sin^2 \beta}\right)}{\left[1 + \left(\frac{\sin^2 \alpha}{\sin^2 \beta} - 1\right) BR(h_{SM} \to \bar{\tau}\tau)\right]} \\ \sigma_{VBF}(H) \times BR(H \to \bar{\tau}\tau) &\approx \left[\sigma_{VBF}^{SM} \times BR(h_{SM} \to \bar{\tau}\tau)\right] \frac{\sin^2(\alpha - \beta)}{BR(h_{SM} \to \bar{\tau}\tau)}. \\ & \uparrow & \uparrow \\ & 3 - 4 \sigma \text{ discovery at} \\ \text{LHC with} \\ & 30 \text{ fb}^{-1} \text{ and } 14 \text{ TeV} \end{split}$$

 5σ curve

H, A production $\rightarrow 4 \tau$ event

Similar to large tan β MSSM but $Br_{\tau\tau} = 1 >> 0.08$

Further study needed !

$H \rightarrow AA \rightarrow 4\tau \text{ event}$

CMS, ATLAS are studying the reach of this signal (Higgs working group) No existing study available except a similar one for the NMSSM with $m_A = 7$ GeV, $m_h=120$

The claim is

- 20 σ discovery with 300 fb⁻¹ ~ > 5 σ with 30 fb⁻¹
- h heavier than 130 GeV become hard as tt background rise
- we expect heavier A will not reduce the efficiency, but Br suppressed by the small phase space if h is light.

Need further study with heavy Higgs

Conclusion

- Astrophysical observation provided interesting information about DM.
- Leptonic Higgs can serve as a messenger of DM to explain the observed PAMELA/Fermi/HESS data.
- No DM at the LHC
- Higgs physics at the LHC could be very different and au may be the key to find the Higgs
- For possible models ? Please see our paper.

Backup 1 : Models

Models of dark matter

LLN model

$$\delta L_{dark} = \delta m^i L_i L^c + \dots$$

decay

$$\chi \rightarrow (A, H) + \nu_l \rightarrow \tau^+ \tau^- \nu_l$$

or
$$\chi \rightarrow H^{\pm} + l^{\mp} \rightarrow \tau^{\pm} l^{\mp} \nu_{\tau}$$

Innert doublet model

$$L_{dark} = \lambda |H_l|^2 |H_D|^2 + \dots$$
$$\delta L_{dark} = \delta m H_l^{\dagger} H_l + \dots$$

Singlet scalar model

$$L_{dark} = \lambda |H_l|^2 (\Phi)^2 + \dots$$
$$\delta L_{dark} = \delta m |H_l|^2 \Phi + \dots$$

Summary of models

	annihilation	decay	symmetry
LLN	L, large coupling Little hierarchy	N, have both direct lepton and cascade τ, less Boost factor, DM mass	Chiral parity for both lepton and quark
singlet	No suppression on Hq mode	8 TeV DM No suppression on Hq mode	Z ₆
Inert D	No suppression on Hq mode	Hq mode suppressed, decay to ZZ open but suppressed	Chiral parity for both lepton and quark, Z_4 Dark parity

Photon

Neutrino

Constraints from Super-K is very stringent

Study by Jia Liu, Peng-fei Yin, Shou-hua Zhu shows

• 2 TeV dark matter annihilate to 2 τ that fit the Pamela/Atic will have the muon flux (induced by neutrino) 3 time bigger than the bound

 \bullet We have 4 TeV dark matter annihilate to 2 H to 4 τ

e are softer \rightarrow boost factor larger

 $\boldsymbol{\nu}$ are softer too

Expecting these effect compensate and give same muon flux

= a few is reasonable

 $B_{total}^{e} = 10000$ need

$$B_{total}^e = \# B_{total}^v$$

• Charged Higgs

Barger, Hewett, Phillips Phys.Rev.D41:3421,1990. Yuval Grossman Nucl.Phys.B426:355-384,1994.

• Lightest CP even scalar (h SM like)

Akeroyd . Phys.Lett.B377:95-101,1996. (LEP2) Akeroyd. J.Phys.G24:1983-1994,1998. (LHC) Shufang Su and Brooks. (decoupling limit)

• We should study the non-decoupling limit