

with Early LHC Data

Tim M.P. Tait





Collider Physics May 20, 2009



#### Outline



- What early data means to me.
- Potential for new physics?
- Some interesting signals.
- Outlook



The Search for New Physics

Looking for physics beyond the SM gives us something to do while we collect enough antimatter to terrorize the Vatican...



(Not to scale)



# "Early"

- Early is a relative concept.
- For the purposes of this talk, early means:
  - O Center of mass energy of initially 10 TeV.
    - Many studies still only exist for 14 TeV.
    - Lower energy is not always worse for new physics!
  - O Data sets below about one inverse fb.



#### Ten Versus Fourteen

- At 10 TeV collision energy, signals involving high energy physics are always smaller.
- Rare, low background signals almost always lose compared to 14 TeV.
- Unless the reaction itself grows with energy, other cases are controlled by the parton flux.
- Electroweak signals, with significant top backgrounds can actually gain ground - high energy quark initial states lose less than gluon initial states.



Monica Vazquez Acosta, Pheno '09



#### **Cross Sections**

- With Luminosities of order inverse fb, we will collect unparalleled statistics for interesting SM processes:
  - High energy jets
  - O Top quarks
- Cross sections of order fb can include many interesting search processes:
  - O Higgs (sometimes)
  - O Colored super-particles (light ones)
  - O Z-primes





#### Early New Physics at LHC

- So where does the LHC have a shot at an early discovery?
  (Besides elevator shafts...)
  - O Some properties of the new physics would help a lot:
    - High cross sections (strongly interacting).
    - Strong energy dependence of signal.
    - Low background / Striking morphology.
  - O There is tension between early discovery at the LHC and not already being ruled out by Tevatron/LEP.





## Top Decays

- With I fb<sup>-1</sup>, LHC will produce about 10<sup>6</sup> top pairs.
- Such a large sample allows one to search for rare decays, such as into Zq or  $\gamma q$  where q = u or c.
- SM BRs are expected to be around 10-9. An early observation would be a clear sign of BSM physics.
- Large enhancements over the SM are possible from loops of i.e. MSSM particles.





Ayana Arce, Aspen Winter '09





I fb<sup>-1</sup> results in hundreds of single top events, and should allow observation of s-, t-, and tW modes.



- Interesting deviations can be signs of new physics!
- LHC is the first opportunity to observe the tW associated mode, which is possible with I fb-I!







### New Quarks?

- New quarks can be produced in pairs through the strong interaction.
- Chiral fourth generation quarks decay through W's into lighter quarks.
  - Precision electroweak
     measurements limit their masses
     to below about 500 GeV.
  - O Six W's and 2 b's! Wow!
- Vector-like quarks can have FCNC decays involving Z or Higgses.
  - O Beautiful Mirrors Ab<sub>FB</sub>!



Choudhury, TT, Wagner '01





Pair production results in appreciable events up to masses of around I TeV.

### Missing Energy

- The cosmological existence of dark matter is strong motivation to search for new forms of missing energy.
- Nowadays almost any vision of BSM physics has or can be extended to include a dark matter candidate
  - O Lots of examples yesterday...
- Missing energy is a calibration-intensive observable.
  - O There is Tension between large missing E<sub>T</sub> and low production of heavy mass states.



## Early SUSY Searches

- Provided the colored states are not too heavy, there can be enough rate.
- Decays involving charged leptons help a lot.
- Generic SUSY models may take quite a bit longer.





#### Model Discrimination

- At one inverse fb, we begin to be able to to distinguish some models from another.
- This study considers a CMS-like detector and compares the spectrum of missing energy resulting from three different SUSY models.









### Compositeness

- Compositeness is modeled using effective field theory, by adding higher dimensional operators to the SM Lagrangian.
- (In fact, this is model-independent description of heavy physics as seen at low energies)
- Tevatron limits (real analyses only exist from run I data) can be guestimated to bound the scale Λ to be greater than around 2-3 TeV.

 $\frac{g^2}{\Lambda^2} \left[ \bar{q} \gamma^\mu q \right] \left[ \bar{q} \gamma_\mu q \right]$ 







- Higher dimensional operators produce cross sections which grow with energy!
- Going from 2 to 10 TeV can produce huge effects!





T LeCompte Pheno '07





Higgs at the LHC



## Higgs

 $10^{2}$ 

10

- With small data sets, Higgs is a challenge.
- There is rate for gluon fusion production modes, but it must be paired with an observable decay mode.
  - Low mass Higgs decays are not always 'striking'.
- WBF has more handles, but with smaller rates. It is probably tough to take advantage of with I fb-I.



 $gg \rightarrow H$ 

 $\sigma(pp \rightarrow H+X) [pb]$ 

 $\sqrt{s} = 14 \text{ TeV}$ 

 $M_{\star} = 175 \text{ GeV}$ 

CTEQ6M





# Heavy Higgs



- With I fb<sup>-1</sup>, heavier Higgs masses can be discovered, decaying into weak bosons.
- This would already be a hint of things to come - precision electroweak tells us such a heavy Higgs will come with some other kind of new physics.
  - Something to discover
     alongside the Higgs, or
     something to look forward to...



**Most difficult region** 





# **Z**-prime



- I left the most obvious example for last. A high mass resonance in lepton pairs is a striking signal, with low (EW) background.
- Z's occur in extended GUT models, topcolor, little Higgs models, EFT of extra dimensions, WIMPonium...
- Tevatron is unable to get much past masses of I TeV, because the parton flux just gives out too fast.
- A Z' could be an early discovery, and would leave a lot left for us to do to fit it into the big picture!





Seth Quackenbush told us about this on Monday!



#### Outlook



- There is a lot of potential for early discoveries with the LHC.
  - O But we do need to get a break with the new physics!
- Signals for an early discovery not already ruled out by earlier experiments will either:
  - Involve low mass strongly interacting particles
  - Have cross sections which grow with energy
  - O Have striking signals involving small and easily understood backgrounds.
- Any of these options are motivated, would be exciting, and raise a lot of new questions we will have more fun answering!

