Xe doping analysis update

24/04/2020

C. Cattadori L. Bomben

Looking for SPE pulses in the pretrigger and tail of each event

Step 1: smoothing the raw waveform

Smoothing performed with a 13 tick-wide moving average filter

Step 2: study of the pretrigger to select baseline and signal events

- in each pretrigger signal, compute signal average and RMS
- 2 data sets emerge
 "baseline" events (no signal in the pretrigger)
- "signal" events (some signal is present in the pretrigger)

Step 3: get the baseline average and rms

- from the pretrigger of the
 "baseline" events, make the
 smoothed waveform value
 distribution
- get mean and rms of the baseline

Step 4: back to the full waveform - apply a differentiating filter

Differentiation performed with a 16 tick-wide 0 area triangle filter

Step 5: establish a cut on the differentiated waveform

Step 6: find the signal onset

Step 7: signal selection based on timing

Step 8: compute the integral of accepted signals

Step 9: signal integral distribution

- From the integral distribution, single PE and (scarcely populated) double PE peaks are apparent
- fit the SPE peak with a gaussian to establish a cut on the integral at 2 sigma

Step 10: average raw SPE (run Dope3_ext_08_Ch5)

Step 11: average smoothed SPE (run Dope3_ext_08_Ch5)

- from the SPE population, synchronize and average all the baseline-subtracted smoothed signals
- average std dev ~1.1 ADC (reduction of a factor ~ $\sqrt{13}$)
- the signal is slightly low-passed

Consistency check: cut on double PE

fit the DPE peak with a gaussian to **establish a cut on the integral** at 1 sigma

Consistency check: average DPE

find the average DPE smoothed signal

Run Dope3_ext_08_Ch5

	SPE	DPE
Pulse Height	22.9 ± 1.4	44.5 ± 4.4
Integral	1106 ± 20	2267 ± 30

Channel 1: superposition of <SPE> for 60 runs

Survey of Ch1 stability: <SPE> integral distribution

Survey of Ch1 stability: <SPE> integral vs time

Survey of response stability: comparison between all chs

- std dev of individual <SPE>-integral ~ 2% for all channels and runs
- time distribution of <SPE>-integral consistent with constant (most recent data must be added & time-weighted fit implemented(?))
- <SPE>-integral distribution ~ gaussian for all Chs, with some variability in the distribution width (6 to 17)

	<spe> PH mean (σ)</spe>	fit with a constant mean (+/-) [χ^2 /ndf]	mean (σ) of distribution of 60 <spe> integrals</spe>
Ch1	20.3 (0.2)	1082 (2.9) [15/59]	1082 (11)
Ch2	17.3 (0.2)	1085 (2.8) [38/59]	1086 (17)
Ch3	20.1 (0.2)	1092 (2.8) [17/59]	1086 (12)
Ch4	20.9 (0.3)	1092 (3.4) [7/59]	1092 (9)
Ch5	22.8 (0.2)	1110 (2.7) [4/59]	1110 (6)
Ch7	20.2 (0.2)	1089 (2.6) [10/59]	1089 (8)

Channel 2: superposition of <SPE> for 60 runs

Channel 3: superposition of <SPE> for 60 runs

Channel 4: superposition of <SPE> for 60 runs

Channel 5: superposition of <SPE> for 60 runs

Channel 7: superposition of <SPE> for 60 runs

Ch2 <SPE> integral vs time

Ch3 <SPE> integral vs time

Ch4 <SPE> integral vs time

Ch5 <SPE> integral vs time

Ch7 <SPE> integral vs time

Ch2 <SPE> integral distribution

Ch3 <SPE> integral distribution

Ch4 <SPE> integral distribution

Ch5 <SPE> integral distribution

Ch7 <SPE> integral distribution

A FIR filter to integrate and smooth the signals

WORK IN

A FIR filter to deconvolve signals

The cusp is then convolved with the SiPMs RC exponential decay (τ is now set to 300 ns, but a second RC decay component may be added)

the τ parameter is now = 300 ns for all the Chs:

- we know it may differ (ch2) among channels
- pulse decay it is not an unique exp decay (from fit of the SPE)
 It has been derived from Ch1 Dope3 run.

It may(should) be optimized on a channel (and run) basis

Filtered waveforms CH5: 2 SPE

Filtered waveforms: a multiPE event

Filtered waveforms

Averaged deconvolved wfs - before doping - no quartz

 so far the wfms are filtered on individual basis and then added: once the parameters are optimized, the filter may be passed at once on the raw-<wfm>

Averaged deconvolved wfs - before doping - quartz

Averaged deconvolved wfs - after 3rd doping - no quartz

Average filtered waveform

Averaged deconvolved wfs - after 3rd doping - quartz

Conclusions

- <BL> and BL_rms are evaluated on the wfm pretrigger samples
- SPE and DPE pulses identified in the whole wfms thanks to FIR differentiator and requirements on dt between pulse onsets
- synchronized SPEs are averaged in each run.
 - The <SPE>-integrals (INT <SPE>) are plotted to survey the stability of the system (electronics)
 - The std dev of the <INT <SPE>> is found to be $\sim 2\%$
- Time distribution of <SPE> is consistent with flat (but recentest runs not yet included) for all the channels
- A FIR filter to smooth, integrate and deconvolve the pulse exponential decay (due to SiPM RC) has been designed: it allows to identify the amplitude and timing of the detected photons
- the filtered-<wfm> is built and compared to the raw-<wfm> (work in progress) and ready for the evaluation of slow-fast components (time/amplitude)

To do:

- Add more data
- Include most recent runs in the SPE time survey
- optimize parameters of the FIR filter
- add second $\tau_{\rm RC}$ to the filter
- characterize via fit the slow component of deconvolved average wvfs for each doping period