

Welcome

The Snowmass Process

EF03 EW Physics:

Snowmass is an opportung future of particle physics

Heavy flavor and top quark physics

We all the opportung future of particle physics

The state of particle physics of particle physics

Co-conveners:

Reinhard Schwienhorst (schwier@msu.edu)

Doreen Wackeroth (dw24@buffalo.edu)

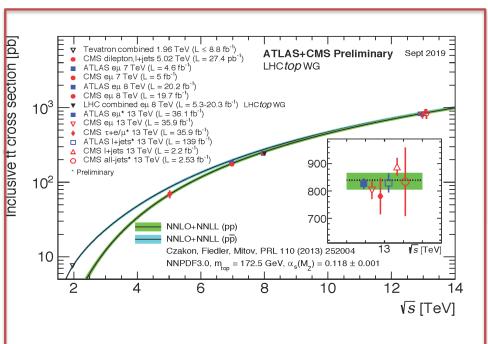
EF Kick-off meeting, May 21, 2020

and they will naturally of Town Hall meetings for and suggestions on the announcements and hathe "Snowmass Young" the message "Subscribe are available via this Sn

Sincerely,

Young-Kee Kim (DPF C Chair)

Top Quark Physics: Explore the Unknown


 The top quark is special: it is (still) the heaviest elementary particle with strong connections to the electroweak symmetry breaking sector:

$$y_t = \frac{\sqrt{2}m_t}{v} \sim 1$$
 $\delta m_h^2 \propto y_t^2 \Lambda^2$ $\lambda(Q^2) \propto y_t^4 \log\left(\frac{Q^2}{v^2}\right)$

- Its detailed exploration may provide a first glimpse of physics beyond the Standard Model.
- It decays before hadronization and spin information is transferred to its decay products.
- Copious production of top quarks at the LHC motivate advances on both the experimental and theory side which enables a very rich and successful top physics program:
 - precision measurements of top quark properties: mass, couplings, ...
 - searches for rare processes: single top, $t\bar{t}V$, $t\bar{t}t\bar{t}$, FCNC, ...
 - measurements of a wide variety of observables and in new kinematic regimes: spin correlations, asymmetries, polarization, boosted top, jet substructure, ...

Inclusive top-pair production cross section

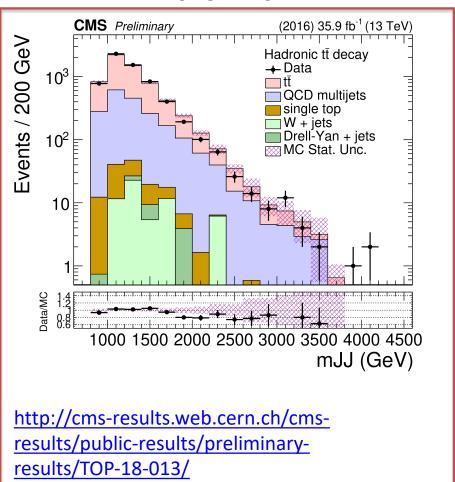
Tevatron and LHC

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

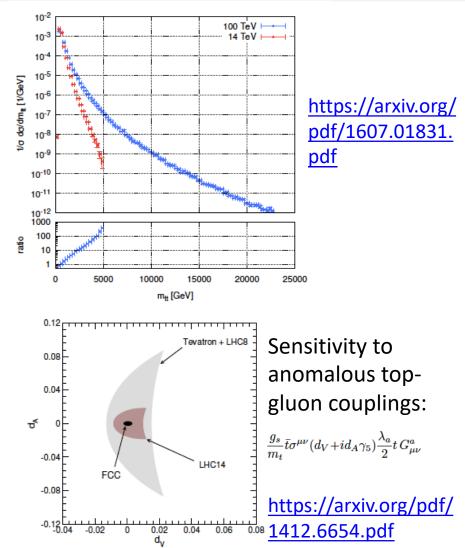
100 TeV pp collider

PDF	$\sigma({\rm nb})$	$\delta_{scale}({ m nb})$	(%)	$\delta_{PDF}(\mathrm{nb})$	(%)
CT14	34.692	$+1.000 \\ -1.649$	(+2.9%) (-4.7%)	$+0.660 \\ -0.650$	(+1.9%) (-1.9%)
NNPDF3.0	34.810	$+1.002 \\ -1.653$	(+2.9%) (-4.7%)	$^{+1.092}_{-1.311}$	(+3.1%) (-3.8%)
PDF4LHC15	34.733	$+1.001 \\ -1.650$	(+2.9%) (-4.7%)	± 0.590	(±1.7%)

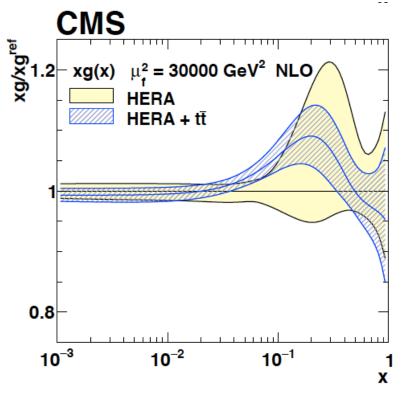
https://arxiv.org/pdf/1607.01831.pdf


CLIC e⁺ e⁻ Linear Collider

\sqrt{s}	380 GeV ^a		1.4 TeV ^b		3 TeV ^b	
P(e ⁻)	-80%	+80%	-80%	+80%	-80%	+80%
$\sigma_{t\bar{t}}^{c}$ [fb]	161.00	75.97	18.44	9.84	3.52	1.91
stat. unc. [fb]	0.77	0.52	0.21	0.29	0.07	0.09

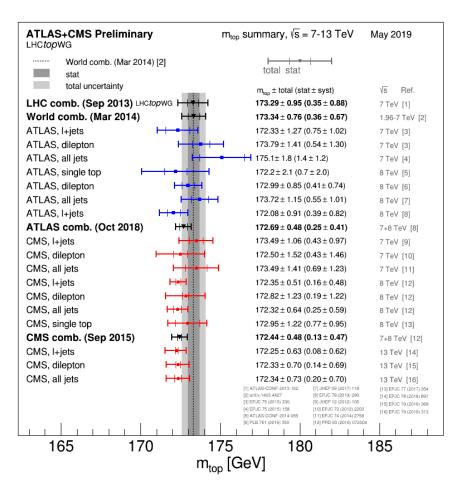

https://arxiv.org/abs/1807.02441

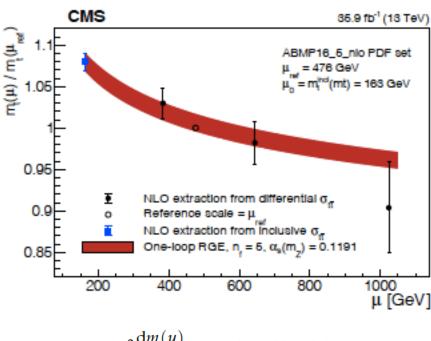
Accessing new kinematic regimes with top-quark pairs


100 TeV pp collider

$lpha_s, m_t^{ m pole}$, and gluon PDF from triple differential cross sections ($M(tar t), y(tar t), N_{jet}$) at the 13 TeV LHC

$$\alpha_S(m_Z) = 0.1135 \pm 0.0016 (\text{fit})^{+0.0002}_{-0.0004} (\text{model})^{+0.0008}_{-0.0001} (\text{param})^{+0.0011}_{-0.0005} (\text{scale}) = 0.1135^{+0.0021}_{-0.0017} (\text{total}),$$


$$m_t^{\text{pole}} = 170.5 \pm 0.7 (\text{fit}) \pm 0.1 (\text{model})^{+0.0}_{-0.1} (\text{param}) \pm 0.3 (\text{scale}) \text{ GeV} = 170.5 \pm 0.8 (\text{total}) \text{ GeV}.$$


From a simultaneous fit to NLO QCD predictions.

https://arxiv.org/pdf/1904.05237.pdf

Top-quark mass measurements at the LHC

Running top quark mass ($\overline{\rm MS}$ scheme) from ${\rm d}\sigma_{\rm t\bar{t}}/{\rm d}m_{\rm t\bar{t}}$ at the 13 TeV LHC

$$\mu^2 \frac{\mathrm{d}m(\mu)}{\mathrm{d}\mu^2} = -\gamma(\alpha_S(\mu)) \ m(\mu)$$

https://arxiv.org/pdf/1909.09193.pdf

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Top-quark mass from $t\bar{t}$ threshold scans at e^+e^- colliders

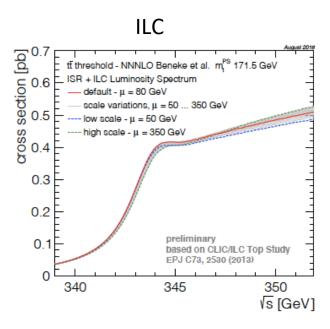
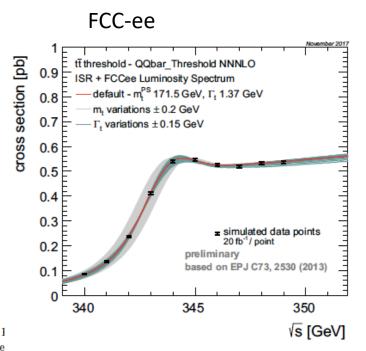
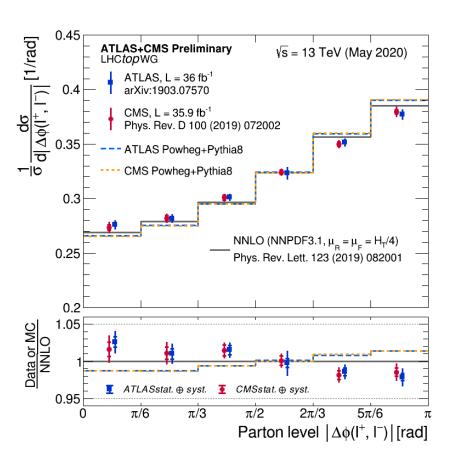



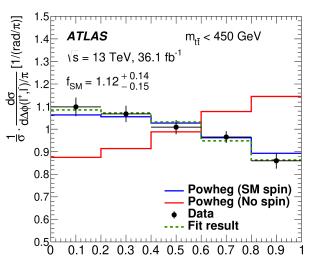
Table 1. Summary of the results of 1D and 2D fits for the two threshold scan scenarios. I 2D fits, the statistical uncertainties give the extent of the 1 σ contour in the respective dire

	0 11	10 11			
parameter	8 point scan	10 point scan			
1D fit					
m_t	$(\pm 10.3_{\text{(stat)}} \pm 44_{\text{(theo)}}) \text{ MeV}$	$(12.2_{\text{(stat)}} \pm 40_{\text{(theo)}}) \text{ MeV}$			
2D fit m_t a	2D fit m_t and Γ_t				
m_t	$\binom{+20.7}{-24.3}{}_{(\text{stat})} \pm 45{}_{(\text{theo})}) \text{ MeV}$	$\binom{+29.7}{-25.3}{}_{(\text{stat})} \pm 43{}_{(\text{theo})}$ MeV			
Γ_t	$\binom{+50}{-55}_{\text{(stat)}} \pm 32_{\text{(theo)}}) \text{ MeV}$	$\binom{+80}{-55}$ (stat) ± 39 (theo) MeV			
2D fit m_t and y_t					
m_t	$(\pm 35_{(\text{stat})} \pm 45_{(\text{theo})}) \text{ MeV}$	$\binom{+34}{-31}{}_{(\text{stat})} \pm 42{}_{(\text{theo})}$ MeV			
y_t	$^{+0.12}_{-0.14^{(\mathrm{stat})}} \pm 0.09_{(\mathrm{theo})}$	$^{+0.128}_{-0.112^{(\mathrm{stat})}} \pm 0.132_{(\mathrm{theo})}$			

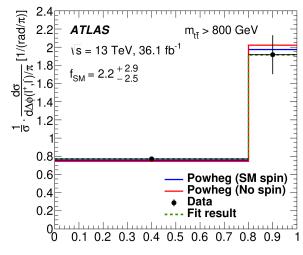


https://link.springer.com/article/10.1 140/epjc/s10052-019-6904-3

Estimated uncertainties in the Potential-subtracted (PS) top quark mass.

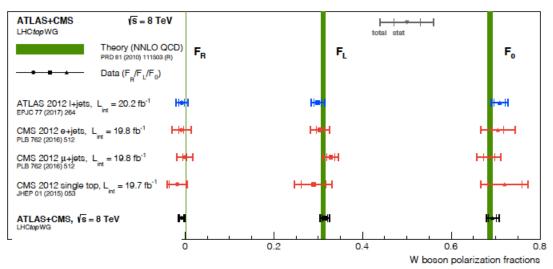

https://arxiv.org/pdf/1902.07246.pdf

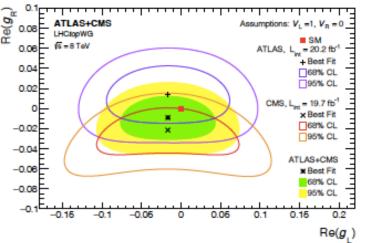
Spin correlations in top-pair production at the 13 TeV LHC



https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

https://arxiv.org/pdf/1903.07570.pdf


Parton level $\Delta \phi(I^+, \bar{I})/\pi$ [rad/ π]

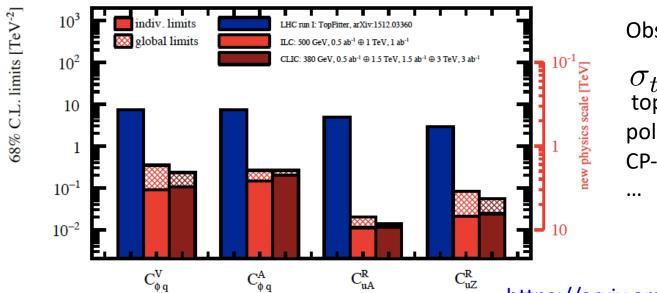


Parton level $\Delta \phi(I^+, \bar{I})/\pi$ [rad/ π]

W polarization and anomalous tWb couplings from top decays in top-pair production at the 8 TeV LHC

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^* \right) F_0 + \frac{3}{8} \left(1 - \cos\theta^* \right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^* \right)^2 F_R.$$

Allowed regions for anomalous tWb tensor couplings.

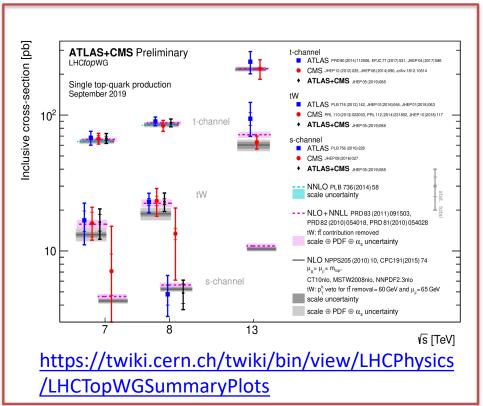

$$\mathcal{L}_{\text{tWb}} = -\frac{g}{\sqrt{2}} \overline{b} \, \gamma^{\mu} \left(V_{\text{L}} P_{\text{L}} + V_{\text{R}} P_{\text{R}} \right) \text{t} \, W_{\mu}^{-} - \frac{g}{\sqrt{2}} \overline{b} \, \frac{i \sigma^{\mu \nu} \, \mathbf{q}_{\nu}}{m_{\text{W}}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \text{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) \mathbf{t} \, W_{\mu}^{-} + \frac{g}{\sqrt{2}} \left(g_{\text{L}} + g_{\text{R}} \right) \mathbf{t} \, W_{\mu}$$

https://arxiv.org/pdf/2005.03799.pdf

Top EW couplings from global EFT fits

Individual 95% C.L. limits:

	existing	expected at high luminosity	expected at e^+e^-	
	TopFitter Ref. [74]	Ref. [74] $t\bar{t}V$ [14, 75] $t\bar{t}V$ 10% $t\bar{t}V$ 3% tZj [76]	CC ILC CLIC	
$C^1_{\varphi q}$ $C^3_{\varphi q}$	[-12, 13]	[-1.3, 1.0] $[-2.0, 2.0]$ $[-0.6, 0.6]$ $[-17, 17]$	0.14 0.076 0.098	
$C_{\varphi q}^{3}$	[-5.3, 3.1]	[-1.0, 1.3] $[-2.0, 2.0]$ $[-0.6, 0.6]$ $[-2.8, 1.5]$	$0.14 \ 0.076 \ 0.089$	
$C_{\varphi u}$	[-20, 17]	[-1.3, 3.0] $[-3.4, 2.8]$ $[-0.8, 1.0]$ $[-26, 20]$	0.29 0.15 0.18	
$C_{\varphi ud}$	[-11, 14]	[-8.4, 11] $[-8.4, 8.4]$		
C_{uB}	[-20, 14]	[-4.8, 4.8] $[-12, 12]$ $[-6.6, 4.0]$ $[-12, 11]$	$0.022 \ 0.022 \ 0.024$	
C_{uW}	[-2.0, 2.8] $[-2.7, 1.6]$	[-1.3, 1.3] $[-1.4, 1.4]$ $[-3.6, 3.8]$ $[-2.2, 2.2]$ $[-1.3, 1.3]$	0.015 0.014 0.016	
C_{dW}	[-3.4, 3.6]	[-2.9, 3.1]		

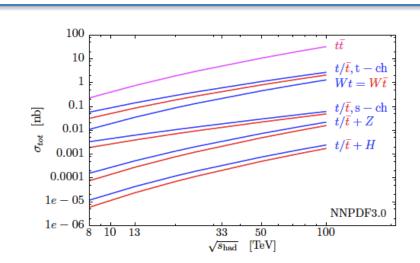

Observables:

 $\sigma_{tar{t}}, A_{\mathrm{FB}}$, top-quark and W polarization, CP-odd observables,

https://arxiv.org/abs/1807.02121

Single-top quark production

7, 8, 13 TeV LHC


Right bottom:

https://arxiv.org/abs/1910.09788

Right top plot:

https://arxiv.org/pdf/1607.01831.pdf

100 TeV collider


	14 TeV		27 TeV		$100 \mathrm{TeV}$	
		2b				
		1.98×10^{-3}				
tb	3.37×10^{-3}	6.24×10^{-3}	0.0134	0.0242	0.0778	0.134
		0.275				
$b ar{b}$		0.020				
jj	0.23	6.9×10^{-3}	0.92	0.037	18	0.68

TABLE IV: Cross sections (in fb) for the different processes in the 1b and 2b samples with the final selection, for $z_1 \geq 0.6$.

1b:
$$|g_L| \le 0.046 [0.033], -\frac{g}{\sqrt{2}M_W} g_L \bar{b}_R \sigma^{\mu\nu} t_L \partial_{\mu} W_{\nu}^{-}$$

2b: $|g_L| \le 0.043 [0.031].$

(assuming 10% systematic uncertainty)

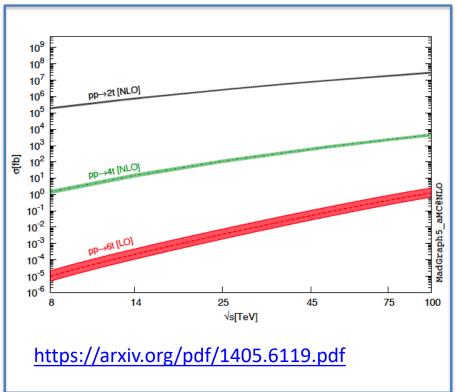
Search for FCNC top decays

FCC Physics Opportunities:

https://link.springer.com/article/10.1140/epjc/s10052-019-6904-3

Multiple top-quark production

13 TeV LHC

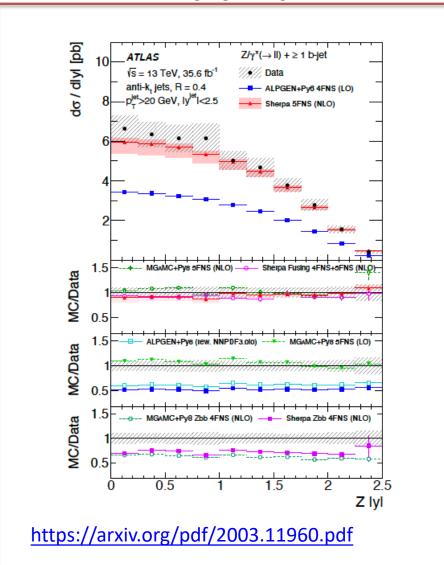

ATLAS (s = 13 TeV, 36.1 fb-1 tTtT (SM) Single lep. / OS dilep. SS dilep. / trilep. Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ Combined Observed Expected (u=1) 95% CL limit on $\mu = \sigma^{\text{fiff}}/\sigma^{\text{fiff}}_{\text{SM}}$

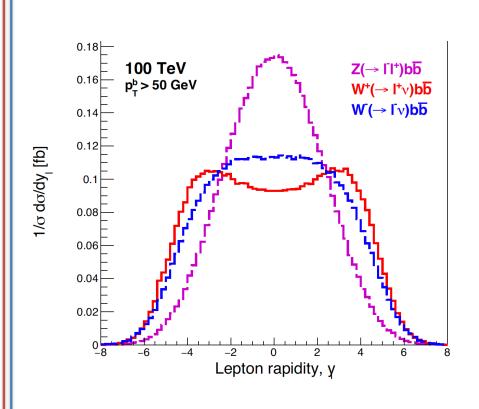
Limit on 4 top-quark contact interaction:

$$|C_{4t}|/\Lambda^2 < 1.9 \,\mathrm{TeV^{-2}}$$

https://arxiv.org/abs/1811.02305

Future pp colliders


Heavy Flavor Physics (bottom, charm)


- Decays of b and c quarks is covered in the <u>Rare Processes and</u> Precision Measurements TG RF1.
- Here we will study the prospects for heavy flavor production (bottom and charm) in association with EW gauge bosons:
 - Precision probes of pQCD and heavy-quark factorization schemes
 - W+c production accesses the strange quark content of the proton
 - Z+b production probes the b-quark PDF

Z+b-jets production

13 TeV LHC

100 TeV pp collider

https://arxiv.org/pdf/1607.01831.pdf

Many connections with other Frontiers and TGs

Rare Processes and Precision:

RF1: Weak Decays of b and c quarks - direct sharing of topics

Cosmic:

• CF1: Dark matter particle-like – when dark matter is produced at a collider in association with top

• Theory:

- TF02: EFT
- TF06: Theory techniques for precision physics
- TF07: Collider Phenomenology
- TF08: BSM model building

Accelerator:

- AF3: Accelerators for EW/Higgs (Top?)
- AF4, Multi-TeV Colliders

Energy Frontier:

• EF01 – ttH, EF04, EF05 - in particular MC generators, EF06: PDFs, EF08, EF09 - EFT fits, new fermions, EF10

Here is how to get involved:

- Join our email list by emailing to <u>listserv@fnal.gov</u> and keep the subject line blank and type in the body:
 SUBSCRIBE SNOWMASS-EF-03-TOP HEAVY-FLAVOR@FNAL.GOV FIRSTNAME LASTNAME
- Email the conveners: <u>schwier@msu.edu</u>, <u>dw24@buffalo.edu</u>
- Share your ideas for Snowmass-specific studies in form of a Letter of Interest (at most 2 pages):
 - Deadline: August 31, 2020
 - Instructions: https://snowmass21.org/loi
- Participate in our first EF03 TG meeting on May 28, 1-3pm EDT: https://indico.fnal.gov/event/43491/

Some Resources

ATLAS and CMS public top quark physics results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

ATLAS and CMS public V+heavy flavor (b,c) results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults
http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/VHF.html

LHCb public physics results:

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary QEE.html

CLIC:

http://clic-study.web.cern.ch

ILC TDR:

https://ilchome.web.cern.ch/publications/ilc-technical-design-report

FCC CDR:

http://fcc-cdr.web.cern.ch

• CEPC:

http://cepc.ihep.ac.cn

We are in the process of creating a collection of Top+HF physics specific resources for future colliders and very much appreciate your input.