Snowmass 2021 EF09 - BSM More general explorations

Tulika Bose, Zhen Liu, Simone Pagan Griso

https://snowmass21.org/energy/bsm_general

May 21st 2020 Energy Frontier Workshop

EF09 - BSM: General exploration

SNOWMASS-EF-09-BSM_GENERIC@FNAL.GOV <u>Twiki</u> <u>Indico</u> Slack: <u>ef09-bsm-generic</u>

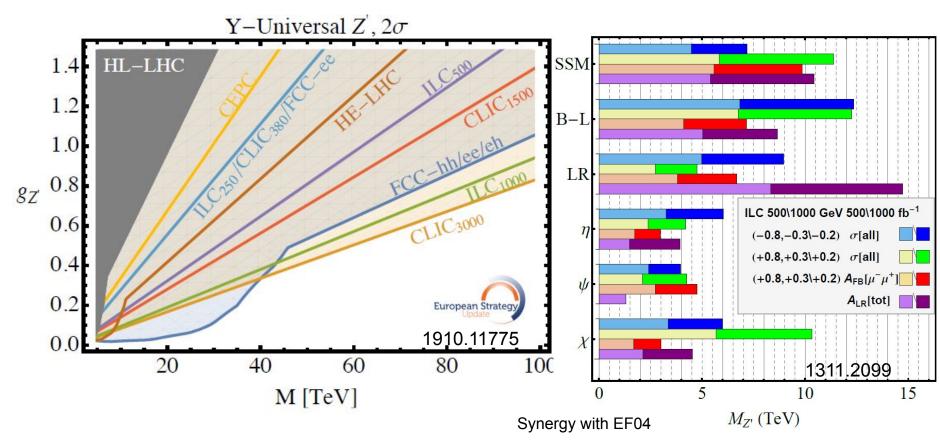
- This topical group aims to study the sensitivity of Beyond Standard Model (BSM) phenomena for future experiments in the energy frontier.
 - Particular emphasis is given to signatures that appear in a large variety of BSM extensions.
- Aim to collect and coherently organize studies on these broad set of topics
- Organization:
 - Kick-off meeting held on May 8th: https://indico.fnal.gov/event/24355/
 - B<u>i-weekly meetings</u> on Fridays @ 12:00 (noon) Eastern time starting on <u>May 29th</u>
 - Can doodle new time later on if needed, depending on participation/interests
 - Meetings announced on the mailing list and on slack
- Please help us to reach out to the community and encourage participation!

EF09: Group's topics

Started with an *initial* set of broad topics that fit the purpose of this group

• New Fermions:

e.g. Top partner, Sterile Neutrinos, excited quark/leptons, (contact interactions)


- New Bosons: e.g. W', Z', including diboson resonances
- Long-Lived Particles signatures
- Dark/Hidden sectors
- EFT interplay with BSM
- Model "agnostic/independent" searches

In the following, I will provide some selective summary results from recent planning activities. There are gaps and new opportunities to be identified by our collective work.

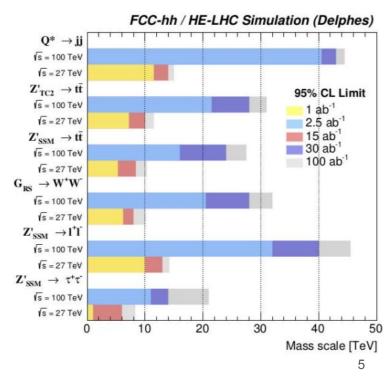
Resonance v.s. Precision

New Resonances

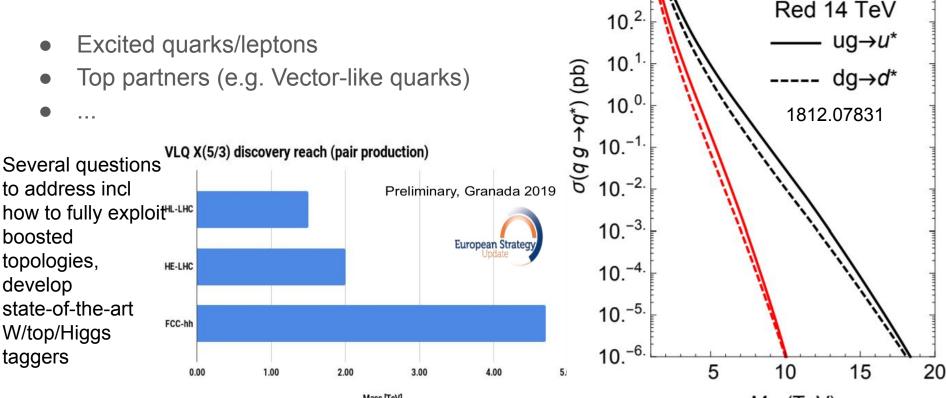
Rich phenomenology

New Resonances

- Leptophobic scenarios (Z'→tt, W' →tb, …)
- Diboson resonance searches
- Searches with 3rd generation particles (Z' → tau tau)


. . . .

Important to address experimental challenges e.g. high pT lepton reconstruction, fully exploit boosted topologies, develop state-of-the-art W/top/Higgs taggers.


Rich future programs

Resonance v.s. Precision

Many different channels

New Resonances (fermions)

10.5

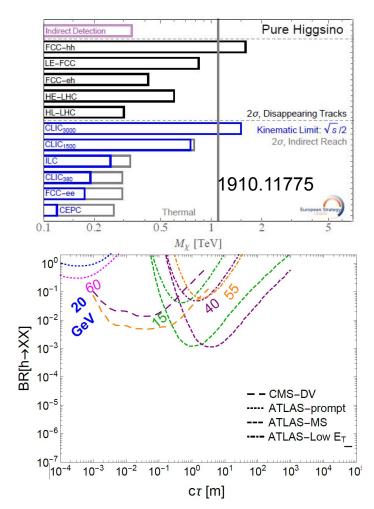
10.^{4.}

10.^{3.}

Mass [TeV]

 $M_{a^{\star}}$ (TeV)

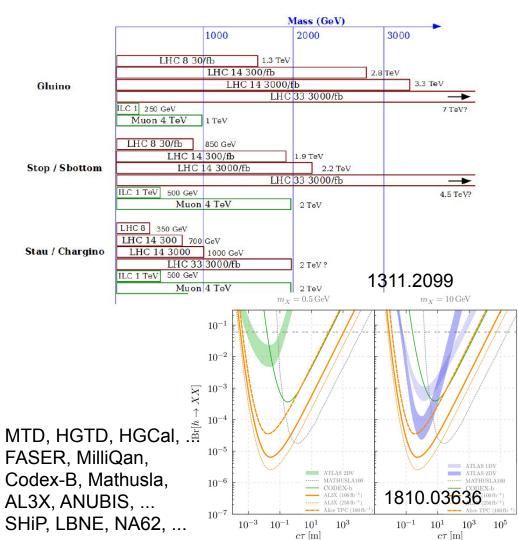
Excited Quark


Black 27 TeV

General Long-Lived Particles

- A lot of growing interest especially in the recent years
 - Many results from LHC, but also from b-factories and dedicated experiments
 - \circ $\,$ $\,$ The field has grown a lot since the last Snowmass report $\,$
- Many signature-driven searches, depending among other things on:
 - Charge: +-1, neutral, multiply-charged, fractional, m/µ-charged,...
 - Lifetime compared to experiment size
 - "Peculiar" properties, e.g. "monopoles", quirks, ...
- Strong interplay with detector design!
 - how to reasonably approach projection for detectors at early stage of design?
 - how can we take advantage and/or shape future development in detector technology?
- Use existing experience to agree on benchmarks for comparisons
- Inter-experimental efforts exist
 - LHC LLP, Physics-Beyond-Colliders,..
 - Also large interplay with other Snowmass frontiers

LLP spectra

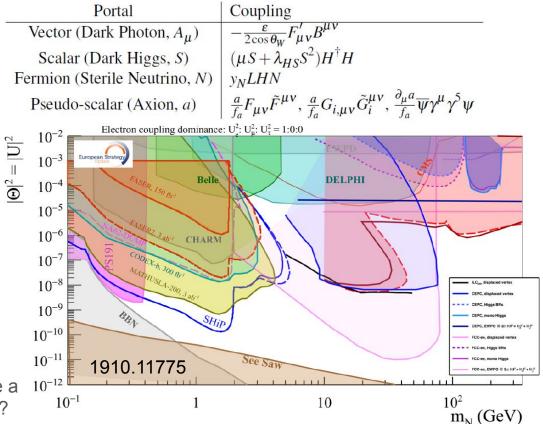

- Interplay with "prompt" searches
 - "Prompt" search probes shortly long-lived regime
 - MET + X: interplay with DM searches (synergy w EF10)
- "Direct" detection, charged massive particles:
 - Disappearing track, highly ionizing particles
 - Signature for minimal Dark Matter, as well as Wino and Higgsino considerations (synergy w EF08)
 - Room for new ideas and complementary probes (e.g., appearing tracks);
- "Indirect" detection through decay products
 - Non-pointing / delayed photons
 - Displaced lepton(s) / jets / etc.. detected with
 Various sub-detectors (tracker, calo, muons, ...)

LLP spectra

- Heavy Stable Charged Particles
 - Fractional charged and millicharged will also be interfacing with other topical groups from Rare Processes & Precision Frontier and Accelerator Frontier;
- Neutral particles
 - Interplay again with MET+X
 - New trigger & analysis ideas
 - Additional "external" detectors
 - Many could be realized already during HL-LHC!

Synergy with Instrumentation Frontier & Accelerator Frontier

Dark Sector, light resonance & LLPs


A "standard" set of portals exists

Coupling structure very rich

Very active field:

- New trigger & analysis ideas
- (New) satellite exp proposals
- Interfacing with other frontiers (e.g., Rare & Precision frontier, cosmo frontier)

Q: How to coordinate different groups to ensure a consistent (e.g., background estimation) output?

Model Agnostic Searches

Lot of interest in using Machine Learning/AI techniques

Anomaly detection at both trigger and analysis level

Also other techniques for special, unexpected signals:

Zero-bias events, data parking, early-alarming, etc.

With enough data, monotonic w.r.t. optimal classifier (!)

[Collins, Howe, Nachman, <u>1805.02664</u>, <u>1902.02634</u>; using Metodiev, Nachman, JDT, <u>1708.02949</u>; see also Blanchard, Flaska. Handy. Pozzi. Scott. <u>1303,1208</u>; Cranmer, Pavez, Louppe, <u>1506.02169</u>] D. Shih et al, 2001.05001,2001.04990

Synergy with Theory Frontier & Computation Frontier

Fig. from J. Thaler's Pheno 2019 talk also M. Perelstein's ML4jets 2020 talk 11

Please mark your calendar and subscribe to the EF09 mailing list

Upcoming events

May 29th: New Resonances

June 12th: General Long-Lived Particles

June 26th: Exotica (incl. new fermions, new tools, ...)

July 9-10th: two-day Energy Frontier workshop

July 23-24th: Dark Sector and light Long-Lived Particles (jointly with RF06 and EF10)

Snowmass is open to everyone and physics-oriented Please join us!

Contributing to EF09

- Join our bi-weekly meetings!
 - Even if time is limited, ideas and critical reviews of other people's work and general discussions!
- Fill simple Google form "Express of Interest"
 - Study you're interested / planning to perform
 - Ideas for which you seek collaborators!
 - Topics you're interested in collaborating with others
 - <u>https://forms.gle/1freqMHfTjAobga86</u>
- Submit Letter-of-Intent: <u>https://www.snowmass21.org/docs/upload.php</u>

We've received ~35 EOI's, about 50% are dark sector+LLPs, 25% New Resonances, 25% Exotica (anomaly detection, new tools, etc.) We plan to make some of the information more public (upon agreement from the submitters) for easier formation of collaborations.

-	
	se this form to communicate your interest in either performing a study or join a particular area.
For more	information on activities covered by this group see also the twiki page:
	nowmass21.org/energy/bsm_general
* Require	d
Email ad	Idress *
Your ema	al.
Full nam	•
i ul num	
Your answ	wer
Other C	ollaborators
Your ansi	Ner
Topic (sł	nort) *
Your answ	Ner
Descript	tion or Comments (short paragraph)
Descript	ion or commence (and c paragraph)
Your answ	Ner
Defens	/16)
Keteren	ces (if any)
Your answ	wer

Expression of Interact: Snowmans 2021

Thank you!

Conveners	Tulika Bose, Zhen Liu, Simone Pagan Griso (more contact info)
Mailing-list	SNOWMASS-EF-09-BSM_GENERIC@FNAL.GOV (instructions)
Slack channel	ef09-bsm_generic (instructions)
Next Event	May 21st 8am ET, general Energy Frontier Kick-off Meeting
Expression of Interest	https://forms.gle/1freqMHfTjAobga86

EF09 synergies with other groups

Inevitable that topics overlap (bi-directionally) with other groups

- Example of topics EFX -> EF09
 - MET signature as mono-X (EF10: dark-matter)
 - EFT studies in the electroweak sector (EF04: EWK precision)
 - Etc.. etc..
- Example of topics EF09 -> EFY
 - SUSY Higgsino combinations incl. LLP (EF08: BSM model-specific)
 - Etc.. etc..

While some initial effort was done to try to divide topics, it will really be a fluid discussion and close collaboration with various groups

EF09 synergies with other frontiers

Quite some synergy with other frontiers as well

- Intensity frontier, e.g.
 - complementarity in dark photon searches, e.g. LDMX
 - see also <u>Physics-Beyond-Colliders</u> CERN study group
- Instrumentation frontier
 - New detectors and capabilities that enable new signatures (e.g. triggering strategies for LLPs with timing detectors)
- Computational frontier
 - model-agnostic BSM physics using Machine learning techniques
- Theory frontier
 - \circ ~ Collider phenomenology, BSM model building, ...

For all synergistic activities, the aim is to follow the relevant developments and have dedicated reports/joint discussions when needed and beneficial.

Plans for next meetings

Initial planning for the upcoming meetings:

- Review of existing (e.g. European Strategy, CDRs, ..) studies for dedicated topics and collider/experiments options
 - Discussion and input from the community is critical to identify areas where further development is encouraged!
- Start discussion on some core common benchmarks that are critical for cross-experiment comparisons and define "must-have" studies for the report

EF09: Topics and plans

- Snowmass 2021 report target: Synthesis of existing (and new) studies aim to have a set of core benchmarks that can give an overview and allow cross-comparison
 - Consistency of assumption plays a key role
- Equally important to highlight specific models/questions that can be particularly suited for approach/machine X
- In addition to existing future collider project, a natural fit for this group are "side-experiments" that maximize the reach of proposed colliders
 - An easy example are dedicated experiments searching for long-lived particles
 Examples from current collider: Faser, Mathusla, Codex-b, etc...
- Being a BSM "Generic" group, we welcome new ideas/experiments that fit the energy frontier topic and can bring excitement to the community!

Collider	Type	\sqrt{s}	P [%]	N(Det.)	\mathcal{L}_{inst} [10 ³⁴]	L	Time	Refs.	Abbreviation	
	-J F -	v	$[e^{-}/e^{+}]$	- ()	$cm^{-2}s^{-1}$	[ab ⁻¹]	[years]			
HL-LHC	pp	$14\mathrm{TeV}$	-	2	5	6.0	12	[13]	HL-LHC	
HE-LHC	pp	$27\mathrm{TeV}$	_	2	16	15.0	20	[13]	HE-LHC	n
FCC-hh ^(*)	pp	$100{\rm TeV}$	—	2	30	30.0	25	[1]	FCC-hh	р
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]		
		$2M_W$	0/0	2	25	10	1-2			
		$240{ m GeV}$	0/0	2	7	5	3		$FCC-ee_{240}$	
		$2m_{\rm top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅	
							(+1)	(1y SI	D before $2m_{top}$ run)	
ILC	ee	$250 { m ~GeV}$	$\pm 80 / \pm 30$	1	1.35/2.7	2.0	11.5	[3, 14]	ILC ₂₅₀	
		$350~{\rm GeV}$	$\pm 80 / \pm 30$	1	1.6	0.2	1		ILC_{350}	
		$500~{\rm GeV}$	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC_{500}	
							(+1)	(1y SD	after 250 GeV run)	
		$1000 {\rm GeV}$	$\pm 80/\pm 20$	1	3.6/7.2	8.0	8.5	[4]	ILC1000	e
							(+1-2)	(1–2y S	D after 500 GeV run)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC	
		$2M_W$	0/0	2	10	2.6	1			
		$240 {\rm GeV}$	0/0	2	3	5.6	7			
CLIC	ee	$380 { m GeV}$	$\pm 80/0$	1	1.5	1.0	8	[15]	CLIC ₃₈₀	
		$1.5 { m TeV}$	$\pm 80/0$	1	3.7	2.5	7		$CLIC_{1500}$	
		$3.0 { m TeV}$	$\pm 80/0$	1	6.0	5.0	8		CLIC ₃₀₀₀	
							(+4)	(2y SDs	between energy stages)	
LHeC	ep	$1.3{ m TeV}$	_	1	0.8	1.0	15	[12]	LHeC	
HE-LHeC	ep	1.8 TeV		1	1.5	2.0	20	[1]	HE-LHeC	е
FCC-eh	ep	$3.5\mathrm{TeV}$	_	1	1.5	2.0	25	[1]	FCC-eh	

Christophe Grojean

Higgs@Future Colliders WG

19