SP PHOTON DETECTION SYSTEM

ETTORE SEGRETO University of Campinas - UNICAMP - Brazil

SP-PD Preliminary Design Review 18-19 June 2020

Consortium Membership

Consortium Membership status on April 2020

Brazil	Federal University of ABC	
Brazil	University Estadual de Feira de Santana	
Brazil	Federal University of Alfenas Poços de Caldas	
Brazil	Centro Brasileiro de Pesquisas Físicas	
Brazil	University Federal de Goias	
Brazil	Brazilian Synchotron Light Laboratory LNLS/CNPEM	
Brazil	University of Campinas	
Brazil	CTI Renato Archer	
Brazil	Federal University of São Carlos	
Brazil	Technological University of Paraná	
Brazil	Federal University of São Paulo	
Colombia	Universidad del Atlantico	
Colombia	Universidad Sergio Arboleda	
Colombia	University Antonio Nariño	

Czech Republic	Institute of Physics CAS, v.v.i.
Czech Republic	Czech Technical University in Prague
Paraguay	National University of Assuncion
Peru	PUCP
Peru	Universidad Nacional de Ingineria (UNI)
UK	Univ. of Warwick
UK	University of Sussex
UK	University of Manchester
UK	Edinburgh University
USA	Argonne National Lab

Consortium Membership

Pretty International Consortium

46 Participating Institutions equally distributed among Latin America (17), North America (12) and Europe (17) as in the spirit of DUNE Colllaboration

USA	California Institute of Technology	
USA	Colorado State University	
USA	Duke University	
USA	Fermi National Accelerator Lab	
USA	Idaho State University	
USA	Indiana University	
USA	University of Iowa	
USA	University of Michigan	
USA	Northern Illinois University	
USA	South Dakota School of Mines and Technology	
USA	Syracuse University	
Italy	University of Bologna and INFN	
Italy	University of Milano Bicocca and INFN	
Italy	University of Genova and INFN	
Italy	LNS Catania	
Italy	University of Lecce and INFN	
Italy	INFN Milano	
Italy	INFN Padova	
Italy	University of Ferrara and INFN	
Spain	CIEMAT Madrid	
Spain	Granada University	
Spain	IFIC Valencia	

PD Consortium Management Table of Organization

SP PD Scope

The scope of the photon detector (PD) system for the DUNE far detector reference design includes design, procurement, fabrication, testing, delivery and installation of the following components:

Light collection system

Collects photons from a large area and drives them towards the active sensors (SiPMs/MPPCs). X-ARAPUCA – an evolution of the ARAPUCA - is the baseline design.

Silicon photomultipliers

Two vendors with a proven experience in developing cyogenic sensors engaged by the Consortium: Hamamatsu and FBK. Both sensors will be tested in protoDUNE Run-II.

Readout electronics

- Cold Summing board: acrively gangs the signals from the photosensors
- DAPHNE: warm read-out board for digitization of the signals and communication with DAQ

• Monitoring system

- Led pulser, fibers and light diffusers
- Related infrastructure (APA mounting, cabling, cryostat flanges, etc.)

Why do we need a PD system?

- Determination of T_o for nucleon decay events: spatial localization of candidates fundamental to determine if its fully contained or associated with objects entering the detector from the outside. Correction for electron capture along the drift.
- For SNB neutrino events, the PDS allows for proper location of the event vertex and improves energy resolution and gives possibly greater sensitivity to underlying supernova dynamical models.
- The PDS also enables a **complementary triggering** scheme for the burst itself, increasing reliability, reducing dead time, and extending the sensitivity further out to nearby dwarf galaxies
- The PDS can also be used to directly measure *energy calorimetrically* for all classes of events working as a cross-check to the energy measured by the TPC or improving the resolution when both measurements are used together and exploiting the anti-correlation of light and charge

SPPD – High Level Requirements

Label	Description	Specification (Goal)	Rationale	Validation
SP-FD-3	Light yield	> 20 PE/MeV (avg), > 0.5 PE/MeV (min)	Gives PDS energy resolution comparable to that of the TPC for 5-7 MeV SN ν s, and allows tagging of > 99% of nucleon decay backgrounds with light at all points in de- tector.	
SP-FD-4	Time resolution	< 1 µs (< 100 ns)	Enables 1 mm position reso- lution for 10 MeV SNB can- didate events for instanta- neous rate $< 1 \mathrm{m}^{-3}\mathrm{ms}^{-1}$.	
SP-FD-15	LAr nitrogen con- tamination	$< 25 \rm ppm$	Maintain 0.5 PE/MeV PDS In situ measu sensitivity required for trig- ment gering proton decay near cathode.	

More in A. Himmel talk

- The final design of the SP PD will appear very similar to the protoDUNE one:
- Bar shaped modules slided inside the APA frame between wire planes
- Each photon collector module will have approximate linear dimensions of 210 cm x 12 cm
- 10 modules per APA , 1,500 modules in total

8

 Photon Collector based on the X ARAP⁻CA

Light read-out based on SiPM

ARAPUCA concept – working principle

ARAPUCA modules in protoDUNE

Each array hosts **16 ARAPUCA cells** (10 cm x 8 cm) and each cell is *read-out by 12* (6) Hamamatsu SiPM passively ganged together.

ProtoDUNE ARAPUCA array assembled by CSU group

ARAPUCA Module during assembly @ CSU

Each ar cm) and SiPM pa 60

inn i

Inn

hm

0

26

NE arrays installed

PA#3 – close to A#4 -opposite

12

ARAPUCA in protoDUNE

- ARAPUCAs showed good performances => 2% overall detection efficiency (12 MPPCs/cell)
- Detection efficiency stable along the run
- Good performances in energy reconstruction of beam events with light
 More in F. Cavanna talk

X-ARAPUCA concept

- The *X-ARAPUCA* represents a development and an optimization of the traditional *ARAPUCA*
- X-ARAPUCA is a *hybrid solution* between an ARAPUCA and a *light guide*
- In an X-ARAPUCA the inner shifter is substituted by a *polystyrene plate* which has the WLS compound embedded inside. The active photo-sensors are optically coupled to one or more ends of the slab itself

X-ARAPUCA vs ARAPUCA

- In the X-ARAPUCA the standard ARAPUCA trapping mechanisms is untouched
- Additional trapping thanks to the WLS plates which increases the overall efficiency
- Simpler design \rightarrow No need of evaporating the internal surfaces
- More robust \rightarrow Reduces the risks of shifter detaching
- The same design can be easily adapted to a single sided (accepting light only from one side) or to double sided version (accepting light from both sides)

X-ARAPUCA modules

- An X-ARAPUCA module for DUNE will have dimensions of approximately 210 cm x 12 cm, segmented into *four cells* (supercells). Each supercell is an X-ARAPUCA and will host 48 SiPMs read-out by one single electronic channel
- Each supercell hosts
 - ✓ 6 dichroic filters (~10 cm x 8 cm Area) => Produced by OPTO eletronica (São Carlos – SP – Brazil). First version of the filters tested in the single cell and tested in a spectrophotomer → Showed good performance. Working on the optimization of the cut-off and in reducing its dependence from angle of incidence
 - ✓ 1 lightguide plate (~ 48 cm x 10 cm x 0,35 cm) => Baseline is Eljen EJ286 → blue fluor (peak emission @ 425 nm) in a polystyrene matrix. Investigating a different matrix (PVT) which is cheaper. Investigating different manufacturers
 - \checkmark Refective foil on the internal surfaces \rightarrow 3M ESR
 - ✓ 48 actively ganged SiPM (6 mm x 6mm) => Two open options → Hamamatsu cryogenic MPPC specifically developed for DUNE and FBK cryogenic SiPM → Optimization of SiPM developed for the DarkSide experiment on the basis of the DUNE specifications
- Each module hosts a Cold electronic summing boards. MPPC/SiPM are passively ganged in groups of 6 → 8 groups of 6 MPPC/SiPM are actively ganged by the cold summing board

X-ARAPUCA: Supercell

X-ARAPUCA modules

- An X-ARAPUCA module for DUNE will have dimensions of approximately 210 cm x 12 cm, segmented into *four cells* (supercells). Each supercell is an X-ARAPUCA and will host 48 SiPMs read-out by one single electronic channel
- Each supercell hosts
 - ✓ 6 or 12 (single sided/double sided) dichroic filters (~10 cm x 8 cm Area) => Baseline design by OPTO eletronica (São Carlos – SP – Brazil). First version of the filters tested in the single cell and tested in a spectrophotomer → Showed good performance. Working on the optimization of the cut-off and in reducing its dependence from angle of incidence
 - ✓ 1 lightguide plate (~ 48 cm x 10 cm x 0,35 cm) => Baseline is Eljen EJ286 → blue fluor (peak emission @ 425 nm) in a polystyrene matrix. Investigating a different matrix (PVT) which is cheaper. Investigating different manufacturers
 - \checkmark Refective foil on the internal surfaces \rightarrow 3M ESR
 - ✓ 48 actively ganged SiPM (6 mm x 6mm) => Two open options → Hamamatsu cryogenic MPPC specifically developed for DUNE and FBK cryogenic SiPM → Optimization of SiPM developed for the DarkSide experiment on the basis of the DUNE specifications
- Each module hosts a Cold electronic summing boards. MPPC/SiPM are passively ganged in groups of 6 → 8 groups of 6 MPPC/SiPM are actively ganged by the cold summing board

X-ARAPUCA: Dichroic filters

X-ARAPUCA modules

- An X-ARAPUCA module for DUNE will have dimensions of approximately 210 cm x 12 cm, segmented into *four cells* (supercells). Each supercell is an X-ARAPUCA and will host 48 SiPMs read-out by one single electronic channel
- Each supercell hosts
 - ✓ 6 dichroic filters (~10 cm x 8 cm Area) => Produced by OPTO eletronica (São Carlos – SP – Brazil). First version of the filters tested in the single cell and tested in a spectrophotomer → Showed good performance. Working on the optimization of the cut-off and in reducing its dependence from angle of incidence
 - ✓ 1 WLS plate (~ 48 cm x 10 cm x 0,35 cm) => Baseline is Eljen EJ286 → blue fluor (peak emission @ 425 nm) in a polystyrene matrix. Investigating a different matrix (PVT) which is cheaper. Investigating different manufacturers
 - \checkmark Refective foil on the internal surfaces \rightarrow 3M ESR
 - ✓ 48 actively ganged SiPM (6 mm x 6mm) => Two open options → Hamamatsu cryogenic MPPC specifically developed for DUNE and FBK cryogenic SiPM → Optimization of SiPM developed for the DarkSide experiment on the basis of the DUNE specifications
- Each module hosts a Cold electronic summing boards. MPPC/SiPM are passively ganged in groups of 6 → 8 groups of 6 MPPC/SiPM are actively ganged by the cold summing board

X-ARAPUCA: WLS plate

X-ARAPUCA modules

- An X-ARAPUCA module for DUNE will have dimensions of approximately 210 cm x 12 cm, segmented into *four cells* (supercells). Each supercell is an X-ARAPUCA and will host 48 SiPMs read-out by one single electronic channel
- Each supercell hosts
 - ✓ 6 dichroic filters (~10 cm x 8 cm Area) => Produced by OPTO eletronica (São Carlos – SP – Brazil). First version of the filters tested in the single cell and tested in a spectrophotomer → Showed good performance. Working on the optimization of the cut-off and in reducing its dependence from angle of incidence
 - ✓ 1 lightguide plate (~ 48 cm x 10 cm x 0,35 cm) => Baseline is Eljen EJ286 → blue fluor (peak emission @ 425 nm) in a polystyrene matrix. Investigating a different matrix (PVT) which is cheaper. Investigating different manufacturers
 - \checkmark Refective foil on the internal surfaces \rightarrow 3M ESR
 - ✓ 48 actively ganged SiPM (6 mm x 6mm) => Two open options → Hamamatsu cryogenic MPPC specifically developed for DUNE and FBK cryogenic SiPM → Optimization of SiPM developed for the DarkSide experiment on the basis of the DUNE specifications
- Each module hosts a Cold electronic summing boards. MPPC/SiPM are passively ganged in groups of 6 → 8 groups of 6 MPPC/SiPM are actively ganged by the cold summing board

X-ARAPUCA: SIPMs/MPPCs

X-ARAPUCA: SIPMs/MPPCs

 Sensors tested in different laboratories according to a common procedure: Milano-Bicocca, Bologna, Madrid, Valencia, Prague, NIU

X-ARAPUCA modules

- An X-ARAPUCA module for DUNE will have dimensions of approximately 210 cm x 12 cm, segmented into *four cells* (supercells). Each supercell is an X-ARAPUCA and will host 48 SiPMs read-out by one single electronic channel
- Each supercell hosts
 - ✓ 6 dichroic filters (~10 cm x 8 cm Area) => Produced by OPTO eletronica (São Carlos – SP – Brazil). First version of the filters tested in the single cell and tested in a spectrophotomer → Showed good performance. Working on the optimization of the cut-off and in reducing its dependence from angle of incidence
 - ✓ 1 lightguide plate (~ 48 cm x 10 cm x 0,35 cm) => Baseline is Eljen EJ286 → blue fluor (peak emission @ 425 nm) in a polystyrene matrix. Investigating a different matrix (PVT) which is cheaper. Investigating different manufacturers
 - \checkmark Refective foil on the internal surfaces \rightarrow 3M ESR
 - ✓ 48 actively ganged SiPM (6 mm x 6mm) => Two open options → Hamamatsu cryogenic MPPC specifically developed for DUNE and FBK cryogenic SiPM → Optimization of SiPM developed for the DarkSide experiment on the basis of the DUNE specifications
- Each module hosts a Cold electronic summing boards. MPPCs/SiPMs are passively ganged in groups of 6 → 8 groups of 6 MPPC/SiPM are actively ganged by the cold summing board

X-ARAPUCA Cold Electronics

Cold amplifier

- Evolution of the TDR design
- Now a **two-stage amplifier**: SiGe bipolar transistor + fully differential opamp (lower noise, lower power consumption, higher flexibility in setting the loop gain, higher dynamic range with respect to previous design)
- First tests with SiPM + added capacitance to simulate ganging show promising results for signal to noise ratio
- Design of PCBs to fit the PD mechanics is progressing
- Further tests of the entire module are *planned for next autumn*

Warm Read-out Electronics (DAPHNE)

- 40 channels/65 Msps/ • 14 bits
- **Bias-Trim Voltage** • supply
- Cold Electronics power supply + 3V
- Gigabit link up to 6.6 • Gb/s to FELIX DAQ/fullmode protocol
- **DUNE** Timing interface •
- Firmeware and • Gateware being developed

More in M. Toups and J. Castaño talks

X-ARAPUCA validation program

Model of the X-ARAPUCA tested at UNICAMP

Several tests performed with the single cell prototype

- A small 10 cm x 8 cm X-ARAPUCA tested in LAr at UNICAMP. See F. Cavanna talk
- **Two arrays of 4 SiPM** (Hamamatsu S13360-6050VE), passively ganged and read-out with two separate electronic channels
- Both Single sided version and double sided tested with radioactive sources
- Filters by OPTO Eletronica (São Carlos Brazil). See A. Machado talk
- Lightguide plate => Eljen-286 with a PVT matrix

X-ARAPUCA validation program

X-ARAPUCA test result

The source is an alloy of aluminum and natural uranium

More in F. Cavanna talk

- The fit returns the number of detected photons for each line => Comparison with number of photons impinging on X-ARAPUCA window gives the efficiency
- An efficiency around 3.0% was found for single sided and double sided modules

α energy (MeV)	relative intensity	parent nucleus
4.187	48.9%	²³⁸ U
4.464	2.2%	²³⁵ U
4.759	48.9%	²³⁴ U

X-ARAPUCA validation: two cells

- Consortium is currently testing two cells modules designed for the SBND experiment (200 of these modlues will be installed)
- Two modules sent to CERN for the Xe doping test
- One will be tested @ Milano Bicocca
 other one @ UNICAMP
- This step is important to organize the assembly facility and train the assembly team
- Back side with electrical connections

- Two dichroic windows (10 cm x 8 cm)
- One lightguide plate (20 cm x 8 cm)
- 16 Photosensors

X-ARAPUCA validation: next phase

- Next fundamental phase will consist of the testing of a supercell with cold electronics in LAr. Delayed due to Covid emergency
- Read-out with the first prototypes of the new read-out board => DAPHNE
- Candidate laboratories: Milano Bicocca, Madrid, UNICAMP
- First vertical slice tests of the PD System: DAPHNE + Cold Electronics + X-ARAPUCA Supercell

Monitoring System

- Monitoring system will be *largely inspired by the protoDUNE design*
- The system is constituted by an *external UV led pulser* (275 nm), *quartz* optical fibers, optical feed through and light diffusers installed on the cathode plane
- Allowed for characterization and calibration: gain, cross-talk, timeresolution, channel-to-channel timing, and PDS stability

Xenon Option

- Xenon doping allows to shift the wavelength of LAr scintillation photons from 128 nm to 174 nm.
- Two clear advantages
 - Increasing the Rayleigh scattering length => more uniform light collection from tracks passing at different distances along the drift direction.
 - Risk mitigation against N₂ contaminations: N₂ filtering is not viable in the far detector. N₂ efficiently suppresses the formation of the 128 nm argon scintillation light, while the xenon doping acts to prevent the N₂ quenching process. Tested with success in protoDUNE
- Additional improvement in detection efficiency possible with slight modification to the dichroic filter design
- Test performed in ProtoDUNE-SP from February 2020 discussed in S. Tufanli talk
- Xenon option discussed in EDMS 2382770

Xenon Option: next steps

- R&D program to optimize the X-ARAPUCA design started @ UNICAMP (Dichroic filter and WLS plate)
- First test will be at room temperature, followed by small scale tests @ CERN
- Though xenon doping is not currently part of the baseline design for the PDS, it will likely be included as a component of the ProtoDUNE-2 run and will be evaluated for inclusion in the baseline prior to the Production Readiness Review.

Summary

- SP-PD System made great progresses since the Conceptual Design Review at the end of 2018
- X-ARAPUCA design validated on small scale prototypes
- Consortium is ready to start the validation of the supercell design
- Substantial advance in the SiPM procurement and testing
- Warm electronic read-out board design completed. Now in the prototyping phase
- Xenon doping is an attractive option to improve uniformity of light collection, increasing light collection efficiency and making the PDS resistant to nitrogen contaminations
- Solid baseline design which meets all[requirements

X-ARAPUCA vs. ARAPUCA

- X-ARAPUCA is more efficient in trapping photons:
 - Analytical calculations and MC simulations appoint to an enhancement between 40% and 70% wrt ARAPUCA
- Simpler design:
 - No need of evaporating the internal side of the filter or internal surfaces
 - Great advantage especially for double sided X-ARAPUCAs
 - Faster production
- Risk reduction:
 - \checkmark Reduced adhesion issues \rightarrow limited to the external shifter

0.5 1 1.5 2 2.5 3 3.5

- A new area with 100m² was added to the laboratory which will be dedicated to assembly, testing and storage.
- The total area of LabLepton is now around 350m².

A. Machado @ SPPD parallel

WLS Plates

- Tests on ELJEN light bars
 - Immersion in LN2
 - Fast : quick dunk
 - Slow: 2cm/sec
 - Annealing (only for PVT)
 - Results from ICEBERG
 - Comparisons among different matrixes: PVT,
 Polystyrene and PMMA

1.0

0.8

0.0

280

0.6

More in A. Machado talk

Baseline for DUNE

EMISSION

440

480

520

EJ-286 OPTICAL SPECTRA

400

WAVELENGTH (nm)

- ELJEN (EJ286) comercial Blue emmiting WLS plate
- Peak wavelength 425nm
- Matrix polystyrene

ABSORPTION

320

FOR 5mm THICK PLATE

360