

Results from system validation Esp. ProtoDUNE-SP Prototype Tests at UNICAMP

DUNE-SP Photon Detection System 60% Design Review

June 18th, 2020

ARAPUCA

Full characterization with ProtoDUNE SP at CERN Neutrino Platform

•Sept-Nov. 2018 - Beam Run •Nov.18 - present - Cosmic Run + Xe doping test)

ARAPUCA PD design for protoDUNE

- 2 Bars segmented along beam direction: one in APA3 (beam side), one in APA4
- 4 Modules (FR4 structure) per Bar
- 4 ARAPUCA Cells (single-sided) per Module
- 12 (or 6) cryo-SiPMs per Cell passively ganged
- Dichroic (short-pass) filter optical window: 9.8 x 7.8 cm2
- p-TP deposited on outer surface of Dichroic glass, TPB on inner surfaces deposited on VIKUITI Reflective Foil One of the two ARAPUCA

$$
S_{SIPM}/S_{Dichroic} = 5.6\% \quad \text{(or } 2.8\%)
$$
\n
$$
Cryo-SiPMS \overbrace{\text{L}} \overbrace{\text{L}} \overbrace{\text{L}} \overbrace{\text{C}} \overbrace{\text
$$

DI NE

LAr

춘 Fermilab

DUNE

100% ARAPUCA channel alive (no loss during almost 2 yrs continuing operation)

Calibration system: LED flasher

Ph.Sensors Response

Ph.Detector Response

Mesh transparency Dedicated Measurement at UNICAMP With Monochromator + Si APD

Good agreement with Analytical Calculation/MC simulation

춘 Fermilab

• Constant term: $p_0 = 6.2\%$ *from beam momentum spread & uncertainty and non-uniformities in light collection (non linearity)*

First results on ProtoDUNE-SP LArTPC performance from a beam test at the CERN Neutrino Platform

ABSTRACT: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber 5 (LArTPC) with an active volume of $7.2 \times 6.0 \times 6.9$ m³. It is installed in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range $\overline{7}$ 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components 10 as designed for that module. This paper describes the beam line, the TPC, the photon detectors, the 11 cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on 12 ProtoDUNE-SP's performance, including TPC noise and gain measurements, dE/dx calibration 13 for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector 14 noise, signal sensitivity and time resolution measurements. The measured values meet or exceed 15 the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-16 SP's successful operation starting in 2018 and its production of large samples of high-quality data 17 demonstrate the effectiveness of the single-phase far detector design. 18

KEYWORDS: Noble liquid detectors (scintillation, ionization, single-phase), Time projection cham-19

bers, Large detector systems for particle and astroparticle physics 20

ARXIV EPRINT: 1234.56789 21

Preprint on ArXiv next week

ASHAPESP

40% improvement on collection efficiency compared to standard ARAPUCA

X-ARAPUCAconcept

• The *X-ARAPUCA* represents a development and an optimization of the Standard ARAPUCA

In the X-ARAPUCA the inner shifter is substituted by an *acrylic plate* which has the *WLS compound embedded*. WLShifted Photons are guided towards one end of the plate by total internal reflection. The active photo-sensors are optically coupled to one or more ends of the plate itself

Comparison X-Arapucas and **S-Arapucas**

- Efficiency improvement of $15 40\%$ (for test @ Unicamp)
- Up to 55% more photons in the acrylic plate region

- - ✔ **No need of evaporating** the internal side of the filter or internal surfaces
	- ✔ Great advantage especially for double sided X-ARAPUCAs
	- ✔ Faster production

No gap between plate side and SiPM No gap between plate side and Siriv **Simpler design:**
No attenuation for the acrylic plate

- Dichroic filter (Opto) Cutoff 400 nm pTP coated
- Eljen 286 plate as internal WLS
- Two arrays of 4 HMMTS TSV MPPC

First X-ARAPUCA Test

Alpha Source H. Souza, E. Segreto, A. Machado, et al 2018 JINST 13 P08021

$$
F(E) = \sum_{i=1}^{3} f(E - \mu_i; \sigma, \tau) = \sum_{i=1}^{3} \frac{A_i}{2\tau} \exp\left(\frac{E - \mu_i}{\tau} + \frac{\sigma^2}{2\tau^2}\right) \text{erfc}\left(\frac{1}{\sqrt{2}} \left(\frac{E - \mu_i}{\sigma} + \frac{\sigma}{\tau}\right)\right)
$$

$$
N^A_{y} = N^{LAr}_{y} \times E_{\alpha} \times q_{\alpha} \times \Omega^A
$$

 $= 51000$ Ph/MeV x 4.759 MeV x 0.71 x 0.225

= 38773 Ph (on X-ARAPUCA optical window)

$\epsilon_X = 3.4 \pm 0.2 \%$

 [including corrections for LAr Purity, and for CrossTalk and After Pulses in SiPM]

Efficiency = scale factor between simulated spectrum (red) and experimental spectrum (blue) determined by χ^2 minimization

$$
\epsilon_X = (3.1 \to 2.3) \pm 0.5\,\%
$$

A variation in efficiency after several thermal cycles was noted, and attributed to degradation of the light-guide plate (formation of micro-cracks) due to thermal stress along the several tests performed.

First X-ARAPUCA Operation in experimental conditions **Xe dopingg test**

in protoDUNE

Jan 2020: Installation of X-ARAPUCA detectors into the protoDUNE-SP cryostat

Feb 2020 - present: continued Data taking Xe doping test

Results from Data analysis in next talk (Serhan)

SUMMARY

- ARAPUCA a new Light Collection Technology Concept light trapping by dichroic filter \bigcirc coupled w/ two wls stages - proposed for DUNE in Summer 2016 (PD System Review)
- First ARAPUCA prototype test in Fall 2016 at LNLS (Brazil) with α source and c.r.muons \Rightarrow \bigcirc **Efficiency Measurement**
- Detector design developed for ARAPUCA integration in APA/DUNE and test in Fall 2017 at \bullet FNAL (TallBo test facility) with c.r.muons ⇒ First **Efficiency Measurement**
- ARAPUCA bars in protoDUNE: test with charged particle beams (*e*, π, p) Sept-Nov 2018) + \bullet Long duration test w/ c.r.muons 2019-2020.
	- Complete characterization: calibration, stability, Efficiency (8 separate measurements) \bigodot
	- First **Calorimetric Energy Measurement** with scintillation light \bigcirc
	- DUNE requirements/specifications met \bigcirc
- X-ARAPUCA (Technology development): enhanced efficiency (Test in Campinas) \bigcirc Installation&Operation in protopDUNE-SP for Xe doping test

Back-Up Slides

and slides from PDS 30% Review (Nov.2018)

DUNE

EFFICIENCY

Systematic Error:

- Efficiency (for each module/cell) evaluated from 8 independent measurements. Systematic error taken as dispersion around the mean of the 8 measurements.
- Source of uncertainty is from MonteCarlo *(uncertainty on assumptions/parameters/methods)*:
	- Photon Emission Ph. Yield rel. uncertainty: 8.5%
	- Photon Propagation through LAr Volume Acceptance rel. uncertainty: 5%
	- Photon Transmission (through wire planes/ground mesh) Transmission rel. uncertainty: 7%
	- *- Recombination Light dependence on dE/dx non included in MC simulation*

X-ARAPUCA concept: *enhance light trapping by light guiding*

- There are *two main trapping mechanisms* through which a photon can be detected by the X-ARAPUCA:
	- ➢ *Standard ARAPUCA mechanism*. The photon, after entering the X-ARAPUCA box, is converted by the WLS of the inner plate, but is not captured by total internal reflection. In this case the photon bounces a few times on the inner surfaces of the box until when it is or detected or absorbed;
	- ➢ *Total internal reflection*. The photon, converted by the filter and the slab, *gets trapped by total internal reflection*. It will be guided towards one end of the plate where it will be eventually detected. This represents an improvement with respect to a conventional ARAPUCA, which contributes to *reduce the effective number of reflections on the internal surfaces*. The sides of the plate where there are not active photo-sensors will be coated with a **reflective layer** which will allow to keep the photon trapped by total internal reflection.

X-ARAPUCA vs.ARAPUCA

- **X-ARAPUCA is more efficient in trapping photons**:
	- ✔ Analytical calculations and MC simulations point to an enhancement *between 40% and 70%* wrtARAPUCA
- **Simpler design:**
	- ✔ **No need of evaporating** the internal side of the filter or internal surfaces
	- ✔ Great advantage especially for double sided X-ARAPUCAs
	- ✔ Faster production

X-ARAPUCA test result

● The source is an *alloy of aluminum and natural uranium*

- The fit returns the *number of detected photons for each line*
- Comparison with number of photons impinging on X-ARAPUCA window gives the efficiency
- An efficiency of ~ 3.5% was found and the set of the set

