Optical Components - WLS bars, filters and coatings

Ana Machado DUNE SP-PDS 60% review 06/18/2020

Content

Optical Filters

Substrate choice

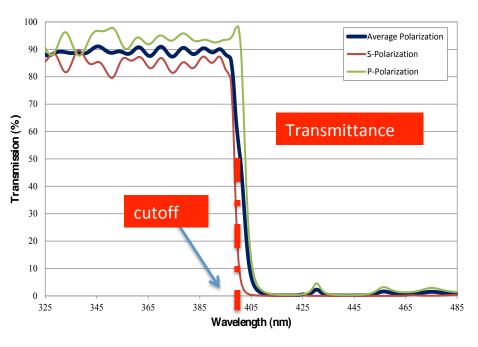
Production

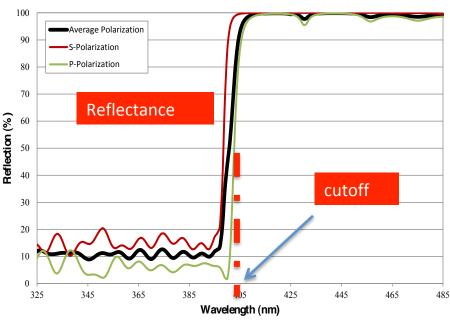
Tests

WLS bars

Tests of different matrixes

- Internal reflector 3M VIKUITI –
- Coatings

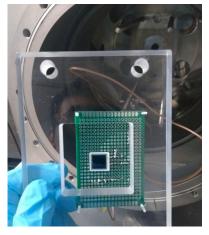

Productions

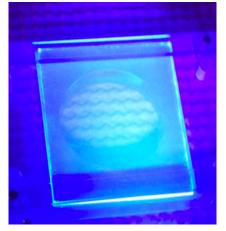


Optical Filters

The optical filters needs to have the following characteristics:

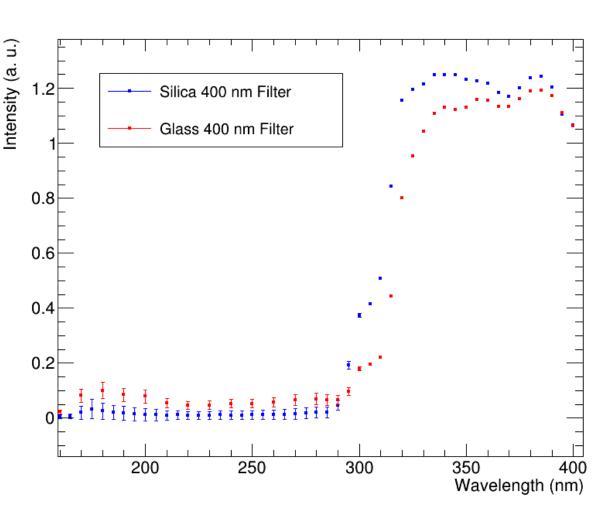
- Transparent to wavelengths bellow the filter cutoff
- Reflective for wavelengths above the filter cutoff
- Designed for Angle Of Incidence of 45 degrees





Substrate analysis

- A test setup designed to perform comparative measurements of different filter substrates produced by Opto Electronics company.
- Fused Silica and an Optical Glass
 (B270) were tested using a Deuterium
 light source monochromator (emission
 120 400nm) and a Si APD S8664-1010
 (sensitive between 320nm -/ 1000nm)
- Cutoff 300nm
- Calibration: direct light to APD



Results

- Above 350nm the transmittance spectrum of the two samples is similar.
- The adhesion of pTP on both substrates, and robustness of the film in LN₂ investigated. No differences were identified.
- B270 selected as baseline since it is much cheaper than fused silica and shows the same level of performance in the relevant wavelength range

Opto Filters - First Batch

- The first samples of filters were made of B270 (optical glass) and fused silica
- After the cleaning process and the evaporation with p-TP a circular structure appeared on both samples:

Several tests was done at CTI:

(Chemical hood, muffle, wettability and adhesion tests)

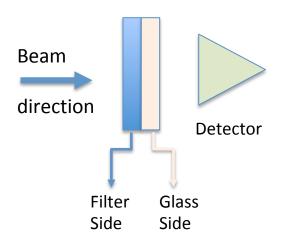
The problem was not due to the cleaning procedure or pTP evaporation.

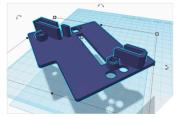
Commercial sputtering deposition system with sample holder with circular patterns

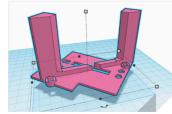
- Opto company changed this disc
- New filters are perfect !!!

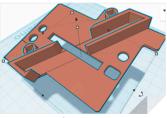
Production

Date	#	Coated	Visual Inspection	
09/16/2019	23	09/18	Circular halo	
10/25/2019	12	10/29	Visibly perfect after coating	2 Lab Leptons2 Milan4 CERN4 Syracuse
11/07/2019	30	11/08	10 coated - ok	18 FNAL
		11/11	11 coated - ok	2 Milan
11/19/2019	130			
12/03/2019	40			1 UV-VIS tests

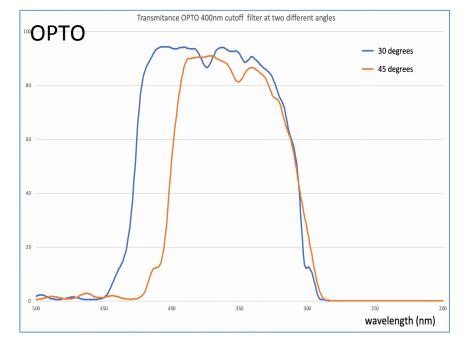


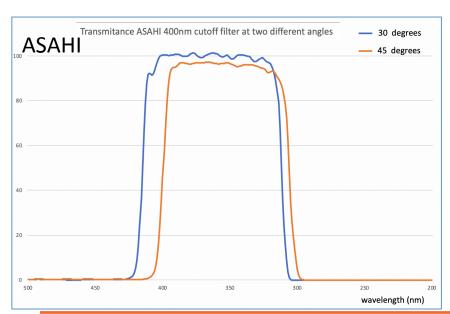

Tests @ UNICAMP


UV-VIS spectrometer Perkin-Elmer



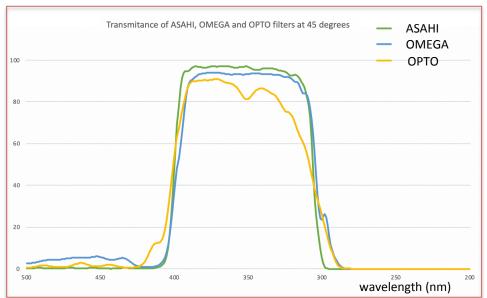
- Reflectivity (8 angle from incidence beam)
- Transmittance (different angles): 3D print support





Courtesy of Frederico DeMolin

- Humidity and Temperature controlled
- Samples:
- Filters from OPTO, OMEGA and ASAHI 400nm cutoff



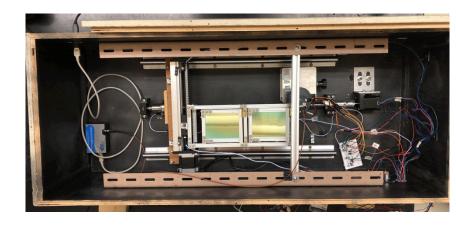
Transmittance

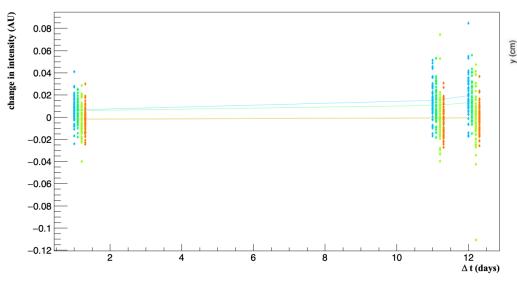
- The design of OPTO filters is inspired to the ASAHI and OMEGA ones.
- OPTO will increase the number of layers in order to reach the optical performance as ASAHI and OMEGA
- OPTO was chosen due to ease of communication between industry and university, and the very competitive cost.

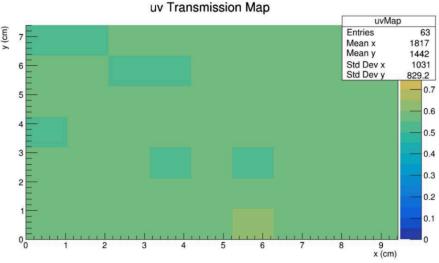
Tests @ Syracuse

By Denver Whittington & Kyle Spurgeon

- Goal is to analyze the resiliency of pTP filter coating in flowing argon
- Test Setup 74L LAr cryostat with a frame suspending the coated filters
- Periodically inspected for degradation in their opacity, transparecy and WS response
- ~10X the flow of the far detector to simulate stress over a long period
- DarkBox with a visible light (near UV) for scanning.
- Will submerge in Ar for 1 week as soon as COVID-19 shutdown ends (July)



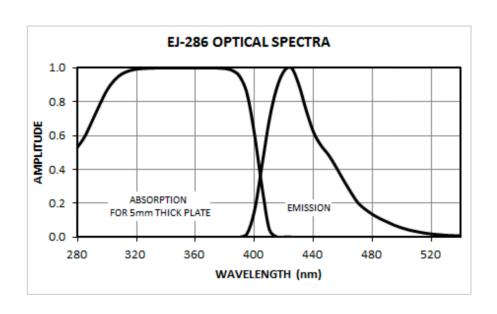

SSyracuse University


Dark Box test and results

- Three LEDs have been setup to illuminate a single spot on the plate at 0° (385nm, 430nm, 610nm)
- Spectrometer to detect the outgoing light.
- 63 point scanning procedure

MultiDay Near UV (385nm)

WLS bars



Tests ELJEN light bars

- LN2 immersion
 - PVT substrate
- Annealing @ FNAL
- LN2 controlled immersion.
 - PVT and Polystyrene substrate

Baseline for DUNE

- ELJEN (EJ286) comercial Blue emmiting WLS plate
- Peak wavelength 425nm
- Matrix polystyrene

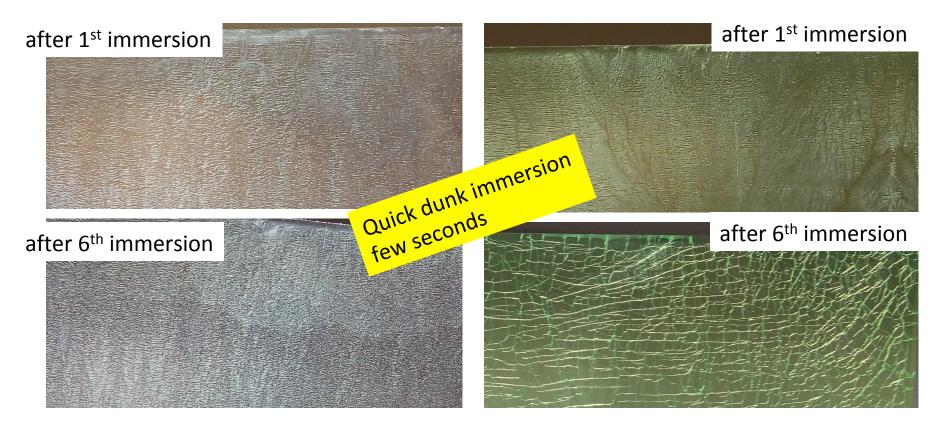
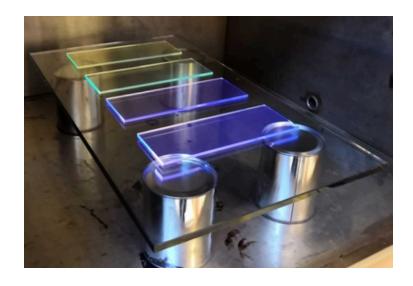
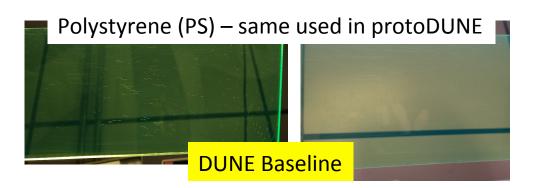

LN2 immersion test

Fig. 1 – EJ286 (left) and EJ280 (right).

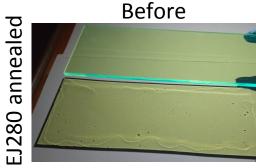

Samples: Blue (EJ286) and Green (EJ280) WLS emitters from ELJEN.

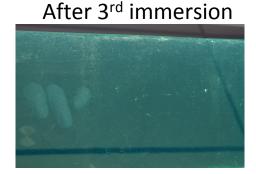
The matrix substrate is a polymer base: Polyvinyl Toluene (**PVT**) - same used in few R&D setups: ICEBERG, Xe Test at CERN and single cell X-ARAPUCA at UNICAMP

Annealing


- Develop thermal treatments
 (annealing) to prevent cracking.
- Anneled 2 blue and 2 green light guides in an oven at FNAL at 80°C.

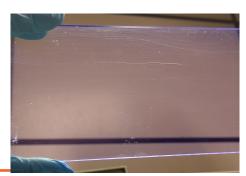
LN2 controlled immersion test



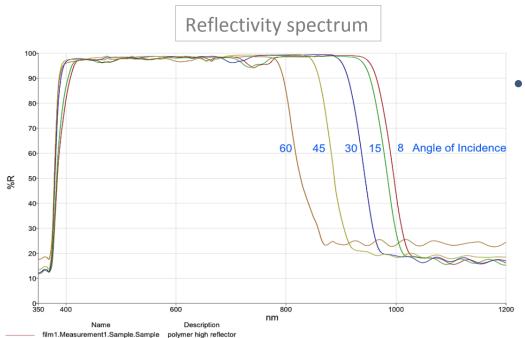

Tests consisted in:

- Immersion "speed" of 2cm/min
- bars/plates immersion in an Arapuca frame

Before and After LN₂ immersions were taken:


- Optical Microscope images
- Transmittance
- Fluorescence (emission and excitation spectras)

• EJ286 PVT Substrate after ICEBERG test – several thermal cycles

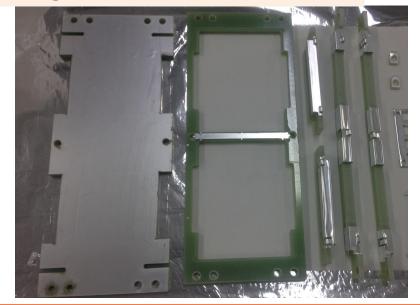

Picture made by C.Escobar 06/12/2020

VIKUITI

 3M Vikuiti is a highly reflective film which is used to line the internal surface of the X-ARAPUCA cavity.

- It has high specular reflectivity above 400nm and matches very well the emmission spectrum of the light guides
- Specular reflector favoured with respect to diffuse reflector by MC results

film1.Measurement2.Sample.Sample film1.Measurement3.Sample.Sample film1.Measurement4.Sample.Sample film1.Measurement5.Sample.Sample


VIKUITI

 Vikuiti laser cut foil, with protective film

Gluing the VIKUITI at SBND modules

Coatings

Specific procedure of filters' cleaning developed in collaboration with FNAL to maximize adhesion of the film on the glass

pTP films produced by vacuum evaporation (pressure ~ 10⁻⁵mbar) with a custom evaporator.

- Evaporator can host 28 filters
- Each evaporation takes ~ 2 hours including pumping down

Protocols

Protocol		
Cleaning	Filters	done
	Frames	done
	Bolts and Nuts	done
Cryogenic tests	Filters	done
	WLS bars	done
Annealing	WLS bars	In progress
Coating	Filters	done
Assembly	X-ARAPUCA	In progress

Summary

- First batch of OPTO dichroic filters performed well. With current level of performance X-ARAPUCA prototypes meet requirements. Next batch will have enhanced performances
- Long term test of p-TP coatings will start as soon as the experimental activities @ Syracuse will restart
- Light-guide plates tested extensively through several thermal cycles with different immersion speeds. Baseline design matrix behaved well.
- Production of p-TP films on dichroic filters is well mastered

Thank you

