DAPHNE DESIGN

Javier F. Castaño Universidad Antonio Nariño-Colombia

DUNE SP-PDS 60% DESIGN REVIEW

On behalf of the DUNE SP-PD Consortium June 19th, 2020

Outline

- DAPHNE design
- DAPHNE features and plan
- DAPHNE Summary

DAPHNE (Detector electronics for Acquiring PHotons from NEutrinos)

REQUIREMENTS:

- Signal-to-noise > 4 (SP-PDS-14
- Time resolution < 1us (SP-FD-4
- Dark noise rate < 1kHz (SP-PDS-15)
- Dynamic range < 20% (SP-PDS-16)
- DAPHNE hardware: Fermilab-LA Collaboration
- DAPHNE firmware and software: LA responsability

Initially conceived as a Mu2e board upgrade Same AFE device (ADC+signal conditioning) Same basic power supply scheme

Front End Board

DAPHNE DESIGN

- Schematic and layout implemented on Altium Nexus, using Fermilab Vault. Developed by Sten Hansen, Miguel Marchan, Nina Mobienko (Fermilab), Javier Castaño (UAN, Colombia), Juan Vega (CONIDA, Peru)
- Gateware/firmware/software development:
 - Software: microcontroller STM32 (Led by Juan Vega-CONIDA, Peru – Javier Castaño-UAN, Colombia), Zephyr RTOS
 - Gateware/Firmware: Artix-7 FPGA, Vivado, Migen-Litex core (Led by Manuel Arroyave-EIA, Colombia))
 - Full-mode 4.8 Gb/s link (Led by Diego Arana, Carlos Montiel, Paraguay)

DAPHNE

EIA

CONIDA

🛟 Fermilab 🕬 🕅

INTERFACE TO COLD ELECTRONICS

Cryostat

- 40 Channels (differential pair), 5 D-SUB connectors, 50 USD/channel
- 5 options for Bias Voltage, 5 groups with enable signal (each AFE/ADC)
- Variable trimming voltage/channel, from 0 V to 4.096 V (fine adjustment for SiPM Array Voltage), current monitoring per channel
- +3 V/channel, power supply for Cold Electronics amplifiers, current monitoring
- D-SUB Connectors on DAPHNE, Hirose connectors on chassis

DAPHNE-DAQ (FELIX) LINK

DEEP UNDERGROUND NEUTRINO EXPERIMENT

General Milestones for Gateware development

As discused in the DAQ interface document, the milestones for the Firmware development are as follows:

- Q3 2020: Demonstration of the 4.8 Gb/s FULLMODE link with FELIX+Artix7 evaluation board. First checkpoint for allocating resources towards a major re-design of DAPHNE.
- Q4 2020: DAPHNE-timing and readout integration milestone. Final checkpoint for allocating resources towards a major re-design of DAPHNE.
- ▶ Q1 2021: LCM-timing integration milestone.
- ▶ Q2 2021: DAPHNE and LCM system integration in VST milestone.

June 1, 2020

DUNE

Originally, full-mode is defined for 9.6 Gbps. DAPHNE team is working with DAQ consortium to try to implement full-mode at 4.8 Gbps to accommodate Artix-7 limitations. Contingencies (using a Kintex-7 FPGA or aggregator boards) have also been defined in case this change cannot be accommodated.

7 19/06/2020 DUNE SP-PDS 60% Review

Full-mode link according to CERN specification (ATLAS note AT1-DQ-ES-0001 June 3, 2019), basic 8b/10b encoding

2 SFP connectors, 2 optical transceivers at 4.8 Gbps (Artix-7)

TIMING INTERFACE

Based on the original PDTS (UoB)

62.5 MHz VCXO/PLL system, supporting fiber disconnection or fail

Alarms supporting Slow via **Control Interface**

Clock and data recovery

Implementing PDTS system module on the FPGA

Ser Sabery Servir

FIRMWARE/GATEWARE DEVELOPMENT PLAN

POWER SUPPLY

Designed by Miguel Marchan, based on Mu2e board designed by Sten Hansen

New power supply scheme:

- start up power sequence for Artix-7 (required for stability and operation)
- Generation of different voltages: 1, 1.2, 1.8, 2.5, 3.3 V. + 5, -5
- Circuit for the Cold Electronics supply with 2 stages regulator,
- + 3 V output voltage
- Bias and trimm voltage for the Cold Electronics
- About 26 W with 48 V input

SLOW CONTROL

Fast Ethernet, optical interface via Wiznet chip

OPC-UA Server as specified by DAQ Consortium

Parallel interface FPGA-Microcontroller, FMC-based

FPGA Configuration via Slave-serial interface

- AFE/ADC configuration
- Wiznet and PHY configuration
- Current/voltage monitor
- FPGA temperature
- Trimm and offset voltages monitor
- SFP transceivers
- Timing Interface

MICROCONTROLLER DEVELOPMENT PLAN

SUMMARY OF SPECIFICATIONS/REQUIREMENTS

SPECIFICATION/REQUIREMENT	DESCRIPTION								
Estimated cost per channel	50 USD								
Channels	40								
Resolution (bits)	14								
Sample rate	62,5 Msps								
Voltage Supply to Cold Electronics	Bias: 5 options (34, 45, 55, 65,75) Trimm: per channel 0-4,096 Power Supply: +3V (Electronics)								
Monitoring	Bias, Trimm Power Supply (all DC voltages) FPGA Temperature								
Data link	Optical 4,8 Gbps, Full-mode protocol, SFP transceiver								
Timing Interface	Optical, 62,5 MHz, aux LEMO input and output								
Slow Control	Optical Fast Ethernet, SFP transceiver, OPC-UA Server on Microcontroller								
Power Supply	48 V input, estimated power 26 W								
Firmware/Gateware/Software	Artix-7 FPGA, Migen/Litex Core/STM32H753 Microcontroller, Zephyr RTOS								
Full upgrade of the Mu2e board with many improvements and new features									

THANKS!

STATUS FROM 30% REVIEW

- TDR Electronics Next Steps —> Actions
 - Replace outdated components —> old μC & Spartan-6 replaced with new μC & Artix-7
 - 40-channel prototype board —> new design has 5 octal ADCs
 - FPGA logic resource needs —> combine smaller FPGAs into single large Artix-7 FGPA
 - Increase dynamic range —> Replace 12-bit AFE5807 ADC with 14-bit AFE5808A ADC
- Additional 30% Design Review Comments/Recommendations —> Actions
 - Power to active cold electronics through a pair of conductors added to the custom PD cable terminated with ProtoDUNE-SP-style Hirose (rather than HDMI) connectors with system-level grounding plans documented
 - Functionalities specific to Mu2e were removed from DAPHNE design
- New requirements since 30% Design Review —> Actions
 - Expected 1-3 Gbps data rate —> Remove controller module and connect directly to (FELIX) DAQ optically
 - Requires also adding external 48 V supply
- Internal review of DAPHNE schematic to validate design changes since the TDR
 - Parts-availability check also performed to identify long lead-time parts and swap them for alternate ones

DAPHNE (Detector electronics for Acquiring PHotons from NEutrinos)

Schedule & Impacts

• Expect resolution of items raised during internal review to take up to 8 weeks, followed by 2 weeks for fabrication, and 2 weeks for assembly

	2019						2020													2021		
Activity	AUG	SEPT	ост	NOV	DEC	JAN	FEB	MAR	APRIL	MAY	JUN	JUL	AUG	SEPT	ост	NOV	DEC	JAN	FEB	MAR		
DAPHNE PCB development																						
DAPHNE Firmware/software development																						
DAPHNE Preprod. Prototype fabrication and testing																						
DAPHNE Design verifications and improvements																						
DAPHNE Board's fabrication and testing																						

18 19/06/2020 DUNE SP-PDS 60% Review

CONIDA

SiPM Biasing-Bias Voltage

SiPM Biasing-Trimm Voltage

0 V to 4,096 V

SiPM Biasing-Trimm Monitoring

CONIDA

🛟 Fermilab 🛛 🔍 🔍