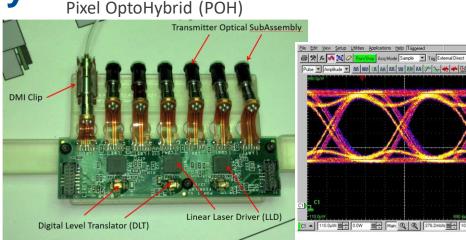


High Speed Links for High Energy Physics

Alan G. Prosser (FNAL) SAC Strategic Planning Workshop 08 May 2020


Brief Recent History:

CMS Phase 1 Upgrades

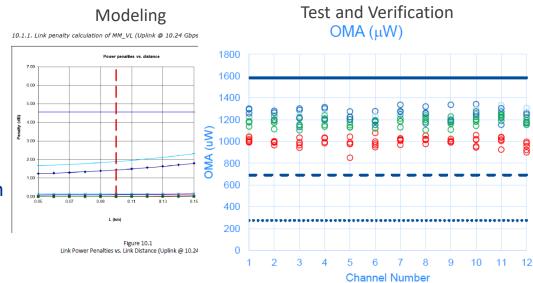
1310 nm, Single Mode Fiber

Single Channel, Discrete Design 400 Mbps

Full Production and Qualification for CMS Forward Pixel Detector

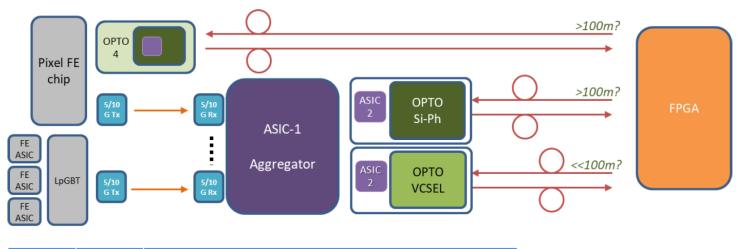
Optical Output from Ch3 TOSA

HL-LHC Upgrades


850 nm, Multi-Mode Fiber

Optical Array, Parallel Channels

10 Gbps Uplink; 2.5 Gbps Downlink


Back End (off detector) Specification and Pre-Production Testing

System Specification and Demonstrator

Future Optical Links for HEP:

Activity	Task	Description	
ASICs	ASIC-1	Very high data rate aggregator/transmitter	Optical link Low mass/active electrical link Existing Parts
	ASIC-2	Optoelectronics drivers	
	ASIC-3	Low-mass electrical cable transmission (active cable)	
FPGA	FPGA-1	FPGA-based system testing and emulation	
ОРТО	OPTO-1 & 2	Silicon Photonics System & Chip Design	
		Silicon Photonics Radiation Hardness	
	ОРТО-3	Next-generation VCSEL-based optical link	
	ОРТО-4	Silicon Photonics packaging	

Source:

"Strategic R&D Programme on Technologies for Future Experiments", CERN, Experimental Physics Department, CERN-OPEN-2018-006

Silicon Photonics: Rad-Hard Detector Readout

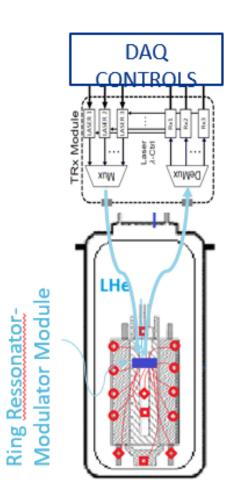
Collaborating Institutions

Freedom Photonics (PI, Steven Estrella) Lawrence Berkeley National Laboratory University of California Santa Barbara Fermilab

Combining:

Silicon Photonics Wavelength Division Multiplexing

Also of Interest for Superconducting Magnet Technology Test Stands



^{*}Steven Estrella, Freedom Photonics, UCSB

Silicon Photonics: Cryogenic Test Stands*

Possible Improvement Utilizing Photonic Modulators

- One ring resonator-modulator module can read multiple sensors;
- Single fiber optic pair necessary for reading the whole sensor suite;
- Optic fiber provides galvanic isolation making the readout system safer;
- More than one resonator-modulator module can be used to provide redundancy;
- Minimal power dissipation inside the cryostat as the resonator-modulator module is extremely low power.
 Furthermore, the optical fiber doesn't work as heat sink as it is the case for the copper pairs.

*Marcos Turqueti, LBNL

