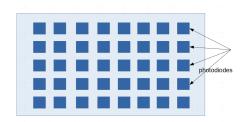
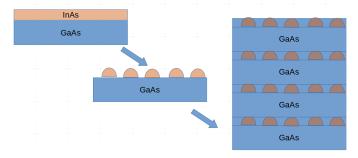
Scintillating sensors based on InAs quantum dots in a GaAs semiconductor matrix


Snowmass'2021 white paper planning

P.Murat (Fermilab)

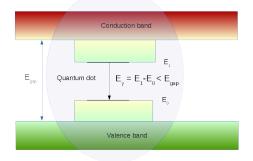
May 08 2020

Motivation


- Next generation trackers will require timing resolution ~ 5 ps
- solid state detectors based on collecting drifting electrons may have a "floor" above that.
 For example, LGAD's seem to have a floor at a level of 15 ps
- scintillating sensors:
 - collect photons, not drifting electrons the detector could be much faster
 - SciFi trackers are know, but fibers have too long travel time, too much material
 - focus on planar sensors
- the scintillator would need to have very high light yield, fast emission
- semiconductor-based scintillators ? $N_{ph}/MeV \sim 1e6/1.8 \cdot E_{gap} \sim (2 2.5)10^5$
- people:
 - Fermilab: C.Gingu, S.Los, P.Murat
 - SUNY Poly : S.Oktyabrsky, M.Yakimov, V.Tokranov, K.Dropiewsky, A.Minns

- sensors : thin wafers with integrated photodetectors
- detect light, light propagates in all directions could expect high "fill factor"
- not a sensor for vertex detectors
 - ▶ coordinate resolution: 500 um pad ==> $\sigma \sim 150\mu$ adequate for many trackers
- material budget: 20 um GaAs ~ 40 um Si ==> 3800 e⁻ h pairs
 - need to read out signals corresponding to 1000 photons
- currently, measure signals with the leading edge of \sim 150-200 ps
 - detected photons travel distances \sim 1 mm, no \sim 10-15 ps theoretical floor

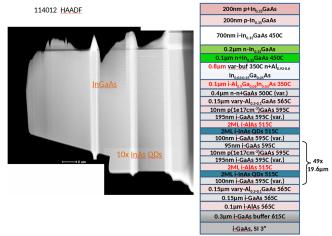
How to make a sensor with embedded QDs ?


- the answer: InAs/GaAs self-assembling quantum dots
 - produced using molecular beam deposition in vacuum (MBE) at several hundred C
- Iattice constants of GaAs and InAs are different
- minimization of the strain energy leads to stable nm-scale stable InAs islands QD's
- repetitive procedure leads to a multi-layer structure

N.B. InAs/GaAs structures are grown as thin , tens of microns, wafers (i.e, 3 inch)

How to make sensor transparent to the QD emission

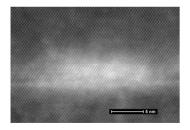
Kastalsky,Luryi,Spivak, NIM A565,2,p650 (2006)

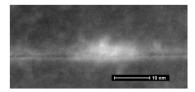


• condition satisfied if QD's are embedded into a semiconductor bulk with $E_{gap} > E_{\gamma}$

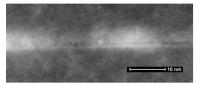
► InAs QD's: $E_{\gamma} \sim$ 1.08 eV, $E_{gap}^{GaAs} =$ 1.4 eV

- other material choices possible, however much less investigated
- light yield \sim 240,000 photons/MeV, emission time $au \sim$ 1 ns

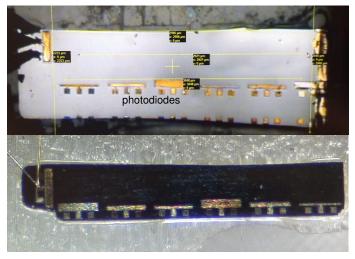

InAs QD / GaAs Sensors N1801 20um Scintillator: low-mag. STEM


- sensors production, optical and electrical characterization at SUNY Poly
 - ▶ high-vacuum MBE, ~ 3" wafers
- InGaAs photodiode integrated, processed on a sensor
- wafer with codename N1801 : 50 layers of InAs QD's separated by 0.4 um of GaAs

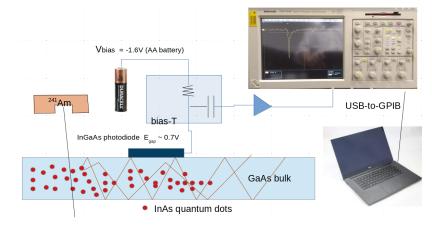
N1801 20um Scintillator: QDs, TEM, DF


#120498HAADF

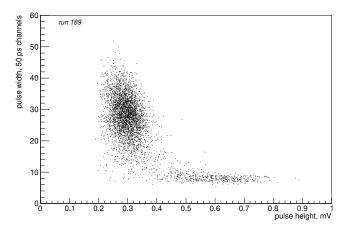
#120554-HAADF


#120957-HAADF

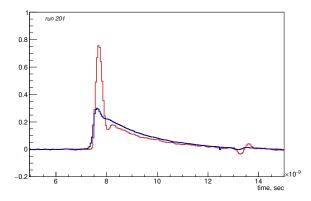
QD diam ~ 14nm QD density (4-5) x 10¹⁰ cm⁻²


∃ >

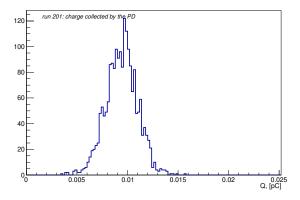
First generation detectors: 20 um thick scintillators


- gen1 sensors: 4-5 mm long , \sim 1 mm wide, 20 um thick to stop a 5.5 MeV α -particle
- photodiodes of 3 different sizes : 500um x (35-50-100) um x 0.7 um mesa

Measurements at Fermilab

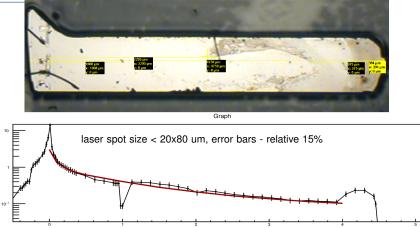

- measurements : use a probe station in WH14 clean room
- amplifiers 1-3 stages, the total gain up to 600
- use TDS7704B (7GHz, 20Gs) as a trigger+DAQ
- read the oscilloscope over GPIB (readout rate up to a few Hz), analyze data offline

First data : waveform analysis

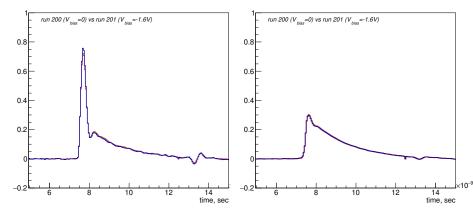

- for each waveform, reconstruct the pulse height and the pulse width (FWHM)
- observe two distinct groups of signals
- the effect is robust, observed with different sensors, different photodiodes, and different amplifiers

Comparison of the averaged waveforms

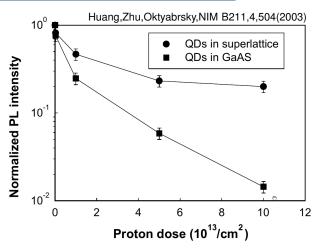
charge in the spike consistent with the direct ionization in the 50x500x0.7 um PD


- current interpretation:
 - > pulses with spikes α 's going through the PD and stopping in the scintillator
 - pulses without spikes particles hitting the scintillator, but not the PD
- tail consistent with the QD radiative lifetime of \sim 1-1.5 ns

• energy of the particle entering the detector \sim 4.6-4.7 MeV (losses in the source)


- $\bullet~$ charge on PD \sim 0.01 pC corresponds to the light collection efficiency of $\sim 6\%$
- observed energy resolution ~ 10-15%, expected much better even for 6% efficiency
- tested sensors are long and thin light is waveguided to the PD, reflects multiple times
- multiple reflections in the sensor?

Laser scan of the sensor: measure the PD photocurrent


- laser scan (beam size 70x20 um²) captures the structure of the photodiode, defects, epoxy at the end
- MC with $\lambda_{abs} \sim$ 2.2 mm and probability of diffuse reflection of 2.5% gives good description
- geometry is important: 1 mm away from the PD the signal drops by \sim x10
- photodiodes on Gen1 detectors are too small for efficient light detection

PD's can operate with zero external bias

- plotted: overlayed average waveforms for two runs with Vbias = -1.6V and with Vbias = 0
- detector can operate without an external bias voltage (photovoltaic mode, as a solar cell)
- a p-n junction has an internal bias of the order of 1V (0.7 for Si),
 - external bias of ~ 1V doesn't add much
- zero-bias mode minimizes the dark current: no shot noise

Radiation hardness - irradiation with 1 MeV protons

emission of InAs QD's in a 5-layer superlattice reduced by 20% after 10¹³ protons/cm²

- 99% recovery after $5 \cdot 10^{13} p/cm^2$ (~ 90 MRad) and 10 min annealing in N₂ at 600 deg C
- Mu2e-II: expect $\sim 10^{12}$ protons / cm²

- Optical Properties of InAs Quantum Dots/GaAs Waveguides for Ultra-fast Scintillators, K.Dropiewski et al, Journal of Luminiscence, 220 (2020) 116952
- Scintillation detector based on InAs quantum dots in a GaAs semiconductor matrix for charged particle tracking, P.Murat et al, CPAD'2019, Madison

Summary

- first set of measurements with the QD/GaAs-based scintillating detectors completed
- observed that detectors can operate in a photovoltaic mode

Next steps

- study of the sensor response as a function of deposited energy
- optimization of the detector geometry (larger PD's)
- study of detectors with multiple PD's
- development of the readout electronics
- temperature dependence of sensor response