

Tracking detectors R&D

Artur Apresyan, Ron Lipton

Snowmass white paper planning meeting May 8, 2020

Interests and targets

- Trackers for future colliders
 - Different requirements depending on e⁺e⁻ or hh
 - e⁺e⁻: very high spatial resolution, and low material budget
 - hh: very high radiation tolerance (10¹⁷ n/cm²), $\sigma_t \sim 5$ ps/hit, $\sigma_x \sim 5 \mu$ m/hit
 - $\mu^+\mu^-$: very high spatial resolution, and low material budget PLUS timing, high radiation tolerance
- The 4D/5D trackers will play a key role at the future machines
 - Reduce backgrounds, track reconstruction, triggering all will need precision timing information, in addition to the precision position
 - Particle ID and LLP searches are new areas where we start utilizing the timing and position information
 - All of these pose unique challenges, and opportunities to detector and electronics design, and event reconstruction

🔁 Fermilab

Interests and targets

- As FNAL group we have different interests in the area of tracking detectors
 - Physics simulations and/or tracking reconstruction
 - R&D on technologies to achieve the required detector performance
 - Front-end and ASIC developments
 - Trigger and backend developments
- At CMS we are building a Gen-1 4D detector
 - requires lots of R&D in "productizing" detectors and understanding how to get the physics out,
 - requires attention, and should be tightly coupled with and inform (both ways) R&D directions on future improved detector technologies

🔁 Fermilab

Current technology R&D in the group

- Low-Gain Avalanche Detectors (LGAD): technology for CMS timing detector: ~30 ps
 - Silicon detectors with internal gain
 - R&D performed in our group: sensors, electronics, assembly, integration
 - Several areas to extend performance of LGADs beyond current limits
- AC-LGAD: •
 - AC coupled LGAD, achieve 100% fill factor,
 - Exceptional position resolution without the need for very small pixelated ____ electronics: use charge-sharing 22.9 < v < 24.1 mm Any Strip

Center Strip

 Left Strip Right Strip

Timing resolution similar to traditional LGAD ____

Current technology R&D in the group

- Trenches as isolation structures between LGAD pixels
 - Nominal inter-pixel gain-loss region of few μ m, same signal as LGAD
- MAPS, HV-CMOS
 - Promises to be: low cost, radiation hard, and with good time resolution
- Electronics design:

5/8/20

- Several generations of fast readout electronics developed in the group for studies of SiPM, Si, LGAD, AC-LGAD
- ASICs developed for CMS and generic: ETROC, CFD-chip

Current technology R&D in the group

We can engineer the silicon substrate to tailor the characteristics of the device

- Buried gain layer LGAD can provide a more radiation hard, stable device
- Gain layer is below epitaxy AC coupling or more sophisticated topside processing can be integrated
- Combine with small pixels, or CMOS MAPS to design specialized sensors.

Usual reach-through implanted from top – limited options

Gain layer grown over implant – can be denser, top can be custom processed

Outline

- Submit an LoI focusing on outlining the interest in 4/5D tracking with high spatial and timing resolutions for future colliders.
 - This can be split into several white papers.
- The group of contributors
 - FNAL: A. Apresyan, L. Bauerdick, D. Berry, K. DiPetrillo, R. Heller, T. Liu, R. Lipton, C. Pena, et al,
 - BNL group (A. Tricolli, et al)
 - Caltech (M. Spiropulu, S. Xie, et al)
 - Saclay (F. Guilloux, et al)
 - Torino group (N. Cartiglia, et al)

