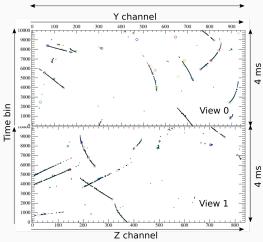
LEM gain measurement with muon tracks

ProtoDUNE DRA Meeting

Pierre Granger - *supervised by Sara Bolognesi & Edoardo Mazzucato* 05/06/2020

Irfu - CEA Saclay

Introduction


Data used for the analysis

run	date	nominal LEM voltage [kV]	Vcathode [kV]	Number of events
1262	2019-10-03	2.9	50	33377
1263	2019-10-03	3.0	50	18424
1267	2019-10-03	3.1	50	4505
1294	2019-10-04	3.2	50	29314
1323	2019-11-21	3.1	50	11464
1327	2019-11-21	3.0	50	11966
1337	2019-11-22	3.2	50	12063
1387	2020-01-13	3.1	50	4258
1401	2020-01-14	2.5	50	24378
1405	2020-01-14	2.7	50	18049
1407	2020-01-14	2.9	50	25497
1415	2020-01-14	3.0	50	4824
1410	2020-01-14	2.9	70	11889
1411	2020-01-14	2.9	90	11769

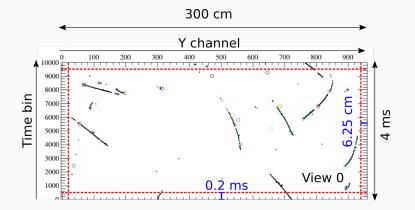
- Using data from 3 different months and exploring several LEM voltages
- Cathode potentials were explored in January
- Event windows last 4 ms
- Event trigger rate of 10 Hz

Reconstruction

Tracks are reconstructed with pandora by using pddp_reco.fcl 300 cm

X [mm]

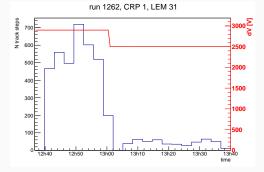
200


3000

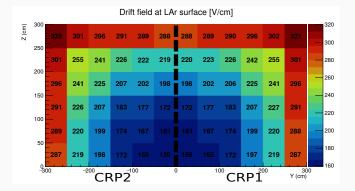
Analysis

Selections

Geometrical selection

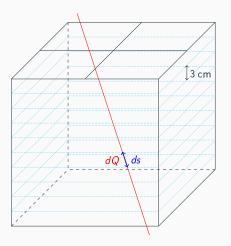

Only tracks passing through the anode are kept by using cuts on the start of the track in space and time. These cuts discard around 25% of the tracks.

Selections


LEMs voltages

Hits detected below a given LEM are taken into account only if that LEM is at nominal voltage during that event. From 72 LEMs at nominal voltage in October to around 50 in January.

Example from voltage diminution during a run \rightarrow clear diminution of the number of tracks.


Taking into account the drift field

from Laura Zambelli's simulation

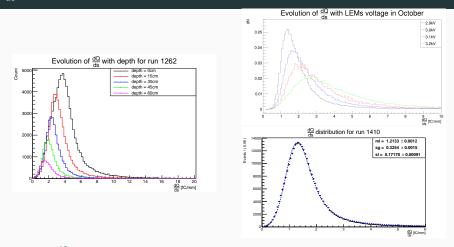
Partial recombination : $R = \frac{A}{1 + \frac{\lambda}{\mathcal{E}} \frac{dE}{dx}}$ Larger charge collection is expected for LEMs on borders because of lower recombination.

Lifetime estimation for purity correction

Binning in depth of the detector

- For each track, ds and dQ are computed in each bin
- For each bin we compute $\frac{dQ}{ds}\Big|_{MPV}$
- Attenuation is deduced as $\frac{dQ}{ds}\Big|_{MPV}$ (depth)

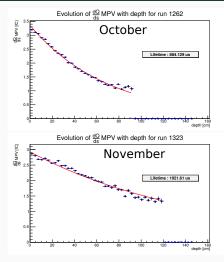
Gain estimation

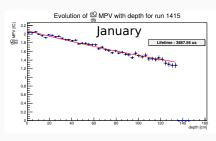

Gain estimation for each LEM

- Only the 5 first depth bins are kept : 15 cm \rightarrow limits the purity and drift field corrections
- We correct dQ of each bin by previously fitted purity
- We correct local recombination due to local drift field
- $\frac{dQ}{ds}\Big|_{\text{MPV}}$ is computed and compared to theoretical value to get gain

Overall CRP gain

Overall CRP gain for a given voltage is estimated as mean gain of all LEMs at nominal voltage.

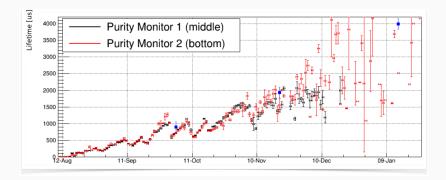

Results



Fit of $\frac{dQ}{ds}$ distributions with the convolution of a gaussian and a Landau.

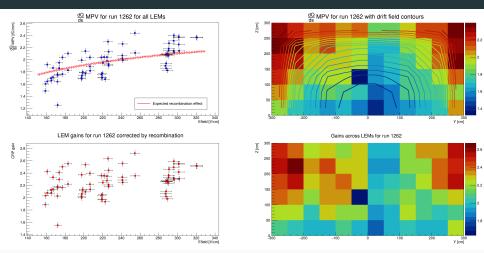
For a gain of 1 at $\mathcal{E}=166~{
m V~cm^{-1}}
ightarrow \left. rac{dQ}{ds}
ight|_{
m MPV}=0.8$

Lifetime results



Fitted exponential decrease of $\frac{dQ}{ds}\Big|_{MPV}$ (depth).

Clear increase of purity with time

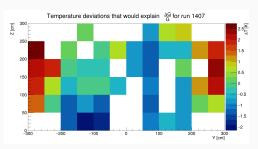

Lifetime results

The fitted lifetimes for the 3 run periods (blue points) are fairly consistent with purity monitors data.

Errorbars correspond to the deviation measured for different runs.

Gains across LEMs

Errorbars are estimated by running the analysis 100 times on a random half of the data

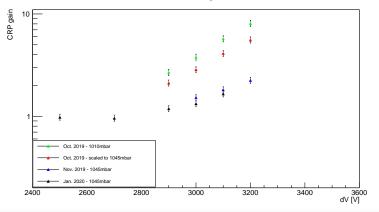

Accounting for recombination only partly explains gain inhomogeneities between LEMs

Could temperature differences explain gain inhomogeneities?

$$G = C \exp\left(A\rho d \exp\left(-\frac{B\rho d}{V}\right)\right)$$

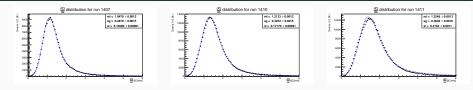
 $\Lambda (-J)$

- A, B, C : coefficients
- V : voltage through LEMs
- ho : gas density
- d : LEM thickness

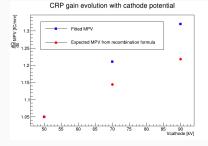

• Converting
$$\frac{\Delta G}{G}$$
 to $\frac{\Delta(\rho d)}{\rho d}$

• Estimating the corresponding ΔT assuming fixed d

Small temperature differences between LEMs could explain the gain inhomogeneities \rightarrow no T probe at the level of LEMs to check


Evolution of gains with voltage

Measured gains



- Charging-up of LEMs with time as expected
- Increase of gain with dV
- Data for $dV < 2.9 \,\text{kV}$ analyzed carefully

Evolution of gain with cathode voltage - Preliminary

 $\frac{dQ}{ds}$ distributions fitted for the whole CRPs

Measured $\frac{dQ}{ds}\Big|_{MPV}$ seems to increase more rapidly with Vcathode than expected from recombination formula.

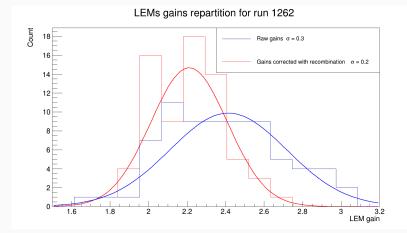
Conclusion

Conclusion

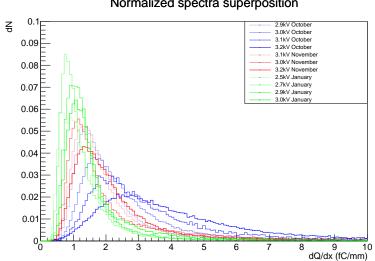
Summary

- Evaluation of purity seems consistent with purity monitors data
- The drift field inhomogeneities are visible on a LEM by LEM analysis
- There is a pattern in LEM gains \rightarrow temperature explanation ?

How to improve?


- Investigating low induction field data
- Correlate gain differences with LEMs thicknesses
- Understanding the evolution of gain with cathode voltage

Backup slides


Gains across LEMs

Average deviation to mean gain across all runs

Spectra superposition

Normalized spectra superposition