BSM Searches at the Tevatron

Ray Culbertson, FNAL rlc@fnal.gov

Search for Pair Production of Dijet Resonances

Phys Rev. Lett. 111, 031802 (2013)

(non) Resonant Production

- 6.6 fb⁻¹
- non-resonant production
 o Coloron pairs
 o RPV stop →jj

Trigger 3 jets, E_T > 20 GeV Σ Et>130 GeV

- Selection
 JETCLU, cone 0.4
 4 jets, E_T > 15 GeV
 |η| < 2.4
- Efficiencies • PYTHIA + GEANT

9/19/13

Mass Reconstruction

- Use 4 leading jets
- Select combinations with min $|M_{Y1}-M_{Y2}|$
- M_{Y1} and M_{Y2} must be within 50%, $\cos\theta^* < 0.9$
- $YY \rightarrow (jj)(jj)$, use average of M_{Y1} and M_{Y2}
- X \rightarrow YY \rightarrow (jj)(jj), use 4j mass

9/19/13

Background Mass Fits

- Fit mass spectra to nominal shapes, developed on MC
- 3 segments in 3 mass regions
- systematics from fitting residuals in control regions

• 4-jet mass in resonant production

ISMD 2013

9/19/13

Non-resonant Limits

 Exclude 50<M(Y)<100 GeV for Coloron and 50<M(Y)<125 GeV for RPV stop
 Low mass limits are unique to the Tevatron

• Generic cross section limits

Exclude axi-gluon [150,400] for M(σ) = [50, M(A)/2]
 this is some space of interest for CDF tt A_{FB} excess,
 but can't exclude the axi-gluon as an explanation

Update on Resonances in W+2 jets

Update of Phys. Rev. Lett. 106, 171801 (2011)

Dijet mass for W+2jets, 2011, 4.3fb⁻¹

"not described by current theoretical predictions within the statistical and systematic uncertainties" DØ and LHC did not confirm...

Reproduced in the Full Dataset

• Full Dataset • e's and µ's $\circ P_T > 20 \text{ GeV}$ \circ $|\eta| < 1$ (central) • MET>25, $\circ M_T > 30 \text{ GeV}$ • 2 jets $\circ E_{T} > 30 \text{ GeV}$ • |η| < 2.4

• Additional selection • $P_T(j1+j2)>40 \text{ GeV}$ • $|\Delta\eta (j1,j2)| < 2.5$ • $\Delta\phi(\text{MET},j1)>0.4$

CDF Run II Preliminary, L = 8.9 fb⁻¹

- Similar excess persists
- Recently, 3 new effects discovered...

Small ∆R not modeled, but not needed, cut it out – small improvement

9/19/13

CDF Run II Preliminary, L = 8.9 fb⁻¹

ISMD 2013

2) Jet Corrections for q/g

• Jet corrections convert observed tower energy to true hadron energy

- validated on photon-jet balancing, 80% quarks
- doesn't quite work for Z-jet balancing, 60% gluons

Effect of JES change

Corrections to MC samples jet energy, based on q/g truth: •quark-jets: (+1.4 +/- 2.7)% gluon-jets: (-7.9 +/- 4.4)%

Muon sample now well described, electron sample still not quite so well

9/19/13

3) Electron "QCD" Fakes Effect

Using data electron candidates with extra energy to represent jets that fake electrons had two problems • extra/missing energy skews the kinematics • the trigger also feels differences

SM Higgs Spin

Higgs Spin Possibilities

• SM predicts J^P=0⁺ • Other options are: ∘ 0⁻ pseudoscalar • 2⁺ graviton - like • Spin 1 ruled out by LHC observation in decay to dibosons (Landau Yang Theorem) • LHC excludes 2+ at 99.9% CL (Atlas) 0- at 99.8% CL (CMS) • But is the Tevatron data in $b\bar{b}$ consistent??

LHC uses decay product and angular information in bosonic decays (mostly gg + VBF production modes)
In associated production at Tevatron, production processes are different depending on J^P assignment °0⁺, S-wave; cross section ~β near threshold °0⁻, P-wave; cross section ~β³ near threshold β=2p/√s
So at the Tevatron the kinematic differences will come from different behaviors at the production threshold

Miller, Choi, Eberle, Muhlleitner, and Zerwas, PLB **505**, 149 (2001) Ellis, Hwang, Sanz, You, JHEP **1211**, 134 (2012)

Simulation of Sensitivity

• MADGRAPH+PYTHIA • Use Graviton for J=2 • PYTHIA + GEANT,

 $J^{P} = 2^{+}$ 1000 600 800 1200 V+X Mass, ZH→llbb

 $+ J^{P} = 0^{+}$ $+ J^P = 0^{\overline{}}$

9/19/13

ISMD 2013

0

0.25

0.2

0.15

0.1

0.05

Signal Discriminants

Use known mass to improve sensitivity
Divide kinematic distributions into high and low S/N, sensitivity regions and treat them statistically separately
Tightest B-tag channels:

ISMD 2013

9/19/13

Spin Analysis Results

Sensitivity to 2⁺ is similar to LHC single channel
Results for 0⁻ will be available very soon!

Update of Dimuon Charge Asymmetry

Update of Phys Rev. D 84, 062007 (2013)

Dimuon Asymmetry

- Measures effects related to CP violation in B_d and B_s mixing • published several times in Run II, current result using 9 fb⁻¹ shows a 3.9σ anomaly • Ongoing work: • bring data up to full dataset update in methodology preview of checks
 - preview of sensitivity
- Final 10 fb-1 results are in review, will be released in about two weeks!

• Two samples, • inclusive low- P_T muons: (P_T >4.2 or P_2 >5.2) and P_T<25GeV • inclusive low- P_T di-muons: M($\mu \mu$) >2.8 GeV • $2.2 \times 10^9 \mu$; $22 \times 10^6 \mu^+\mu^-$; $6 \times 10^6 \mu^\pm \mu^\pm$ • Bin data in P_{T} , η , and impact parameter • Examples: "right-sign" $\circ b \rightarrow B^{-} \rightarrow \mu^{-} X$ $\bar{b} \rightarrow \bar{B^0} \rightarrow B^0 \rightarrow \mu^- X$ "wrong-sign $\circ \overline{b} \to B^+ \to \mu^+ X$ "right-sign" $b \rightarrow B^{0} \rightarrow \overline{B^{0}} \rightarrow \mu^{+} X$ "wrong-sign" "wrong-sign" $\circ b \rightarrow c \rightarrow \mu^+$

 inclusive muon sample should show little asymmetry over background – it checks background a = (n⁺-n⁻)/(n⁺+n⁻), with corrections

Previous and Projected Results

Results from previous analysis, 9fb⁻¹, 3.9σ from SM red bands from other work: B_d→Dµ, B_S→D_S µ
With 10fb⁻¹ improvements, ellipse is 44% smaller!

9/19/13

ISMD 2013

27

G. Borissov & B. Hoeneisen Phys. Rev. D 87, 074020 (2013)

Previous analyses considered all the asymmetry above background to be from CP violation in mixing
Recent work proposed that interference from mixing and non-mixing states can also contribute

$$b \longrightarrow B^0 \xrightarrow{} \overline{B^0} D^+D$$

CP-even states can Contribute to wrong –sign

• With the new binning, the 10fb⁻¹ analysis can measure the contribution!

 $A^{b}_{CP}(bins) = C_{d}(bins) \mathbf{a}^{d}_{sl} + C_{s}(bins) \mathbf{a}^{s}_{sl} + C_{\delta}(bins) \Delta \Gamma_{d} / \Gamma_{d}$

• Is the anomaly resolved? Will $\Delta\Gamma_d/\Gamma_d$ be measured? Stay Tuned - 2 weeks!?

Last Slide

The LHC energy frontier is not the whole story - the Tevatron continues to make a significant contribution to BSM!

- phase space difficult to reach at LHC
- complementary to LHC
- finalizing unanswered questions
- topics not covered yet

And this doesn't count the many unique and valuable legacy measurements that can still be performed with the Tevatron data...

Z Decays to Photons and Neutral Pions

Ζ

Rare and Forbidden Z decays

Small in the SM, Similar to $W^+ \rightarrow \pi^+ \gamma$

Tests:

- Pion form factor
- Physics beyond the SM...

Not allowed in SM - Landau-Yang theorem, Bose-Einstein statistics Tests:

- Commutativity of gauge theory
- Physics beyond the SM...

• Final result reported as BR

CDF Run II Pr		$\int {\cal L} = 10.0~{ m fb}^{-1}$					
	95% C.L. Limits					▶ 3.1 times smaller	
Signal	Expected $(\times 10^{-5})$					Observed	
Process	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	$(\times 10^{-5})$	than world's best
$Br(Z \to \gamma \gamma)$	0.88	1.19	1.66	2.34	3.20	1.66	~ 2 Line of an all of
${ m Br}(Z o\pi^0\gamma)$	1.21	1.63	2.28	3.21	4.37	2.28	- 2.3 times smaller
${ m Br}(Z o \pi^0 \pi^0)$	0.93	1.23	1.72	2.41	3.29	1.73	than world's hest
		1000					that work 5 Dest
							• first reported

•SM expectations for BR($Z \rightarrow \pi^0 \gamma$): $10^{-9} - 10^{-12}$