BSM Searches in Multi-Object Final States with the CMS Detector

Jane Nachtman on behalf of the CMS Collaboration

University of Iowa, USA

ISMD 2013, 19 Sept 2013, Chicago

Introduction

The LHC has produced a wealth of physics results in the past few years

We expect physics beyond the Standard Model to appear – must search all possibilities!

Today's talk is focused on multi-object searches , specifically multi-jet based searches for physics Beyond the Standard Model

<u>Multi-jet resonances:</u>

Dijets

Dijets with b-tags

Tri-jet resonances (6-jets)

Paired dijet search (4-jets)

8-jet resonance

Multiplicity Search

Black holes

Why jets?? Because New Physics is likely to appear in strong interactions – high cross sections (but high background!)

CMS detector

Excellent CMS performance for searches for new physics

Silicon Tracking Detector

- Excellent track momentum resolution

 (Δp_T / p_T ~1% for barrel)

 Excellent vertex reconstruction and impact
- parameter resolution for b-tagging jets

Muon System

➡High purity muon identification

Calorimeter System

Highly granular Electromagnetic calorimeter
 Hadronic calorimeter combined with ECAL for jet and missing ET reconstruction

LHC Luminosity and CMS Triggers

➡CMS collected ~5 fb⁻¹ data during 2011 at \sqrt{s} =7 TeV, ~23 fb⁻¹ data at increasing instantaneous luminosity during 2012 at \sqrt{s} =8 TeV

Dijet Resonances Search

- Parton resonances decaying into dijets from various models
- Search for 3 generic types of narrow dijet resonances
 - qq,qg,gg resonances
 - Using Wide Jets
 - Recover FSR by combining nearby jets into leading jets
 - Improves resolution

EXO-12-059

Models	X	Color	Jp	Г/(2М)	Chan
Excited quark	q*	Triplet	1/2+	0.02	qg
E ₆ Diquark	D	Triplet	0+	0.004	qq
Axigluon	А	Octet	1+	0.05	$q\overline{q}$
Coloron	С	Octet	1 ⁻	0.05	$q\overline{q}$
RS Graviton	G	Singlet	2+	0.01	qq, gg
Heavy W	W'	Singlet	1-	0.01	$q\overline{q}$
Heavy Z	Z'	Singlet	1-	0.01	$q\overline{q}$
String	S	Mixed	Mixed	0.003-0.037	qg, q q ,gg

Dijet Resonances

Highest dijet mass 5.15 TeV

Good agreement between data and background parametrization

Jane Nachtman, ISMD 2013

5

Dijet Resonance Limits

Resolution: gg > qg > qq.
Limits more stringent for: qq > qg > gg.
Limit on any dijet decaying model may be estimated from those generic limits.

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]
E_6 Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]
Z' Boson (Z')	qq	[1.20,1.68]	[1.20,1.87]
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]

Dijets with b-tags

Examine 0, 1, 2 btagged jet events, after dijet selection

EXO-12-023

Extend dijet resonance searches by adding b-tags Sensitivity to b*, Z', RS graviton

Dijets with b-tags

- Exclusion:
 - Z' [1.20, 1.68] TeV (f_{bbbar} = 0.2)
 - B* [1.34, 1.54] TeV
 - RS Graviton [1.42, 1.57] TeV

EXO-12-023

8

Jane Nachtman, ISMD 2013

Paired Dijet Resonance Search (4-jets)

- Benchmark model: pair-produced colorons, decay to qq
- Require four well-separated, central, energetic jets -- optimized for a generic coloron search
- Combinations give 3 pairs -- examine average dijet mass of pairs—(m_{avg}), select the best matched pair—Δm/m_{avg}<15%

7TeV EXO-11-016, 10.1103/PhysRevLett.110.141802

Paired Dijet Resonance Search (4-jets)

- Well described by QCD MC and parameterization (same as in the dijet search)
- No evidence for new physics
- Exclude pair production of colorons with mass between 250 and 740 GeV assuming decays into qqbar

Triple Jet Resonances Search (6-jets)

- Search for strongly coupled resonances decaying into three jets
- Benchmark model: SUSY RPV gluino with 3-body decay, BR depends on model parameters
 - Light-flavor decay : gluino →uds
 - Heavy-flavor decay: gluino →udb or csb
 - Sphericity (event-shape variable) reduces background at high mass
 - Apply b-tagging for heavy-flavor decay

11

Jane Nachtman, ISMD 2013

Triple Jet Resonances Search (6-jets)

 Exclude gluino masses below 650 GeV (95% C.L.) assuming a branching fraction for RPV gluino decay into three light-flavor jets [Heavy flavor model exclusion between 200 and 835 GeV.]

Pair of Paired Dijet Resonances Search (8-jets)

g

00000

π.σ. 20000000

π. σ

ρ, **Α**

Leeeeee

- Benchmark model: hyper-rho (Vector), hyper-pion $(m_{\pi}/m_{o} \text{ can have different ratio})$
- Two particular challenges:
 - **ISR/FSR** contamination (4th jet matches to ISR w/ 50% chance 8th jet rarely matches to real Parton)
 - Combinatorial background (many combinations for doublets)
- terrer g Use MVA -- 6 kinematic variables each one giving a small sensitivity: Leading jet p_{T} , 4th jet p_T , 7th jet p_T , 8th jet p_T , H_T (sum of 8 jet p_T), 8-jet mass

First time search sets limit in 8-jet final state

Microscopic Black Hole Search

- Semi-classical black holes and string balls are predicted by models such as ADD (Arkani-Hamed, Dimopoulos and Dvali), RS (Randall Sundrum), and Unparticles
- Quantum black holes decay to few energetic particles
- Semiclassical black holes, string balls : high multiplicity, democratic, and highly isotropic decays with the final-state particles carrying hundreds of GeV of energy.
- CMS search through S_T=ΣE_T(jet, e, μ, γ, MET) w/ E_T>50 GeV. Multiplicity (N) = number of objects
 - Extract S_T shape from N=2,3 samples.
 - Normalize to events with $N \ge 3,4,5,6,7,8$.

10-jet event

Microscopic Black Holes

- Non-QCD standard model backgrounds are negligible
- Fit to parameterization

No significant excess is observed

EXO-12-009, 10.1007/JHEP07(2013)178

Limits on Black Holes

with N≥4 as a function of S_T

(EXO-12-009, 10.1007/JHEP07(2013)178)

Jane Nachtman, ISMD 2013

16

function of the multi-dimensional Planck

scale M_D for various models with

(area below curve is excluded)

number of extra dimensions = 2,4,6

Conclusion

- CMS new physics searches using jets have been presented based on 2011 and 2012 data.
- No evidence for new physics yet.
- Data significantly constrain many models of new physics.
- Ample space for discoveries when the LHC re-starts at higher energy and luminosity!

Jane Nachtman, ISMD 2013

Backup slides

Summary of CMS SUSY Results* in SMS framework

SUSY 2013

Fat jets definition

Fat jets optimize dijet resonance resolution by recombining FSR into the two leading jets

Fat Jets : clusters of AK5 PF Jets Cluster radius : R=1.1

Fat Jets algorithm

- Select 2 leading AK5 PF jets.
- For AK5 PF jets j from 3 to n:
 - Require:
 - p_{T,j} > 10 GeV
 - |η| < 2.5
 - If $\Delta R_{1j} < R_{Fat}$ and ΔR_{2j} .
 - Add j to Fat Jet 1.
 - If $\Delta R_{j2} < R_{Fat}$ and ΔR_{1j} .
 - Add j to Fat Jet 2.
- R = 1.1 is best choice for a single search for qq, qg and gg resonances.

Jane Nachtman, ISMD 2013

Recombination of Radiation

The Compact Muon Solenoid (CMS) detector

Korea, Pakistan, Russia, USA

CMS Detector Slice

7 meter lever arm for tracking muons

Jane Nachtman, ISMD 2013

Fat Jets

• "normal analysis" two quarks from $X \rightarrow qq$ reconstructed as two jets

At high pt, X is boosted, decay is collimated, qq both in same jet

Happens for $p_t\gtrsim 2m/R$ $p_t\gtrsim 320~{
m GeV}$ for $m=m_W$, R=0.5

< \

Jet Reconstruction

- Anti-kt (AK) clustering algorithm with cone size of 0.5 (AK5) and 0.7 (AK7)
 - Infrared and collinear safe
- Jet types:
 - Calorimeter Jets:

Reconstructed from energy deposits in the EM and HAD calorimeter, grouped in projective calo towers

Particle Flow (PF) Jets (Details in next slide):

Use all detector elements to reconstruct particles and cluster to jets.

• Fat Jets:

Clusters of AK5 PF Jets within radius of 1.1, optimize dijet resonance resolution by recombining FSR into the two leading jets

- Jet energy corrections: using MC truth information and real data (i.e. γ+jet) for residual correction
 - Uncertainty on jet energy scale ~2%
 - Uncertainty on Jet energy resolution ~10%
- MET: negative vector sum of transverse momenta of all particle

Particle Flow Jet

Particle Flow Jet

Microscopic Black Hole Search

- ADD (Arkani-Hamed, Dimopoulos and Dvali) model's solution to the hierarchy problém:
 - $M_{Pl}^2=8\pi M_{Pl}^{n+2}r^n$, where M_{Pl} is the Planck cms scale (~10¹⁶ TeV), M_{D} is the "true" Planck Scale in 4+n dimension at the electroweak scale
 - The parton-level cross section $\sigma = \pi r_s^2$, where r_s (Schwarzschild radius) is defined as:

$$r_{S} = \frac{1}{\sqrt{\pi}M_{D}} \left[\frac{M_{BH}}{M_{D}} \frac{8\Gamma(\frac{n+3}{2})}{n+2} \right]^{\frac{1}{n+1}}$$

- Signature: high multiplicity, democratic, and highly isotropic decays with the final-state particles carrying hundreds of GeV of energy.
- CMS search through $S_T = \Sigma E_T$ (jet, e, μ , γ) w/ $E_T > 50$ GeV, MET is included.
 - Extract S_T shape from N=2,3 samples.
 - Normalize to events with $N \ge 3,4,5,6,7,8$.

CMS Experiment at LHC, CERN Data recorded: Sun May 20 19:57:43 2012 CEST Run/Event: 194533 / 425810100 Lumi section: 303

10-jet event

Background shape for black hole

- Assume the shape (tail) of QCD ST spectrum is invariant for difference multiplicity bins, we can model background from lower multiplicity, and rescale to higher multiplicity.
- Fit exclusive multiplicity = 2/3 with the following functions, in ST [800, 2500] GeV.

Parameterizations

- 0) P0 (1+x)^P1 / x^(P2 + P3 * log(x))
- 1) P0 / (P1 + P2 * x + x²)^{P3}
- 2) P0 / (P1 + x)^P2
- 3) P0 * $exp((P3+(P1*log(x)))+(P2*(log(x)^2)))*((P3+P4*log(x)))/x)$
- 4) P0 *exp(P1*log(x) + P2*x)

Normalization

Rescale the fit to inclusive multiplicity ≥3,4,5,6,7,8 in ST [1800, 2000] GeV.

Paired Dijet Resonance Search (4-jets)

