
BSM searches in multi-object final states in ATLAS

2009-11-23, 14:22 CET Run 140541, Event 171897

Thijs Cornelissen (Bergische Universität Wuppertal) On behalf of the ATLAS Collaboration ISMD2013 19 September 2013

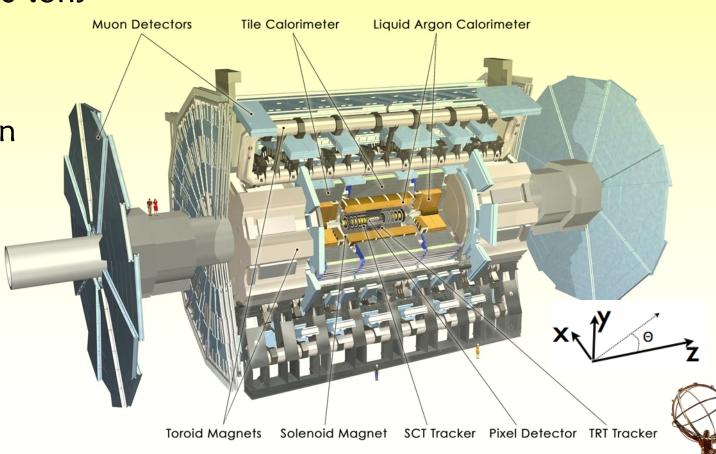
Outline

- Standard Model (SM) of particle physics works very well, all experimental observations so far are consistent with it
 - In particular discovery of SM-like Higgs boson
- Nevertheless, many questions remain unanswered
 - What explains the light Higgs mass?
 - What is dark matter?
 - · ···

P 2

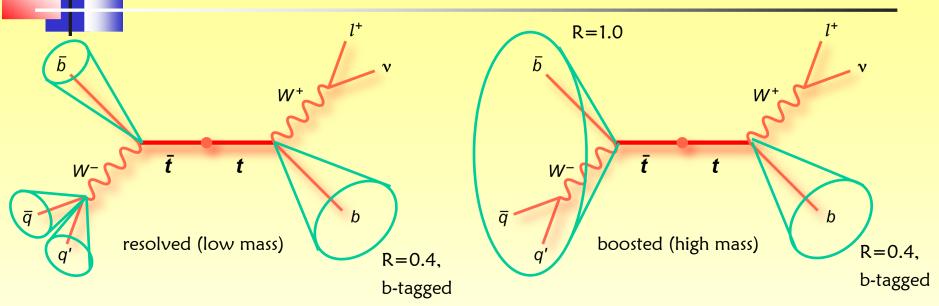
- A wide range of searches for physics beyond the SM that should answer these questions (SUSY, gravitino's, extra dimensions, ...)
- Impossible to cover everything in this talk. Instead, will highlight a number of analyses with a large number of objects in the final state:
 - tt resonances
 - Vector-like quarks
 - Production of supersymmetric particles (squarks, gluinos, ...)
 - R-Parity violation

Long lived particles



The ATLAS experiment

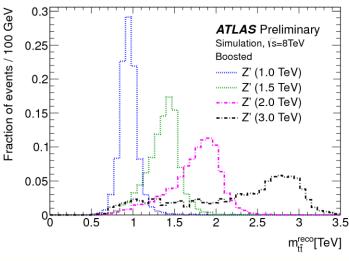
- A Toroidal LHC ApparatuS: multi-purpose detector designed to cover large range of physics measurements
- mass ~ 7000 tons
- height 25m

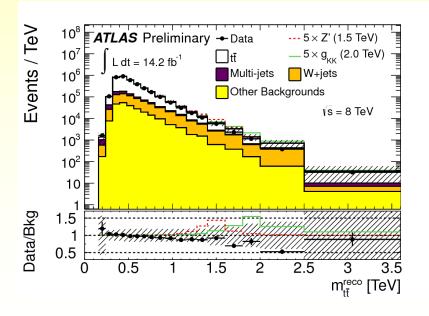

P 3

- length 46m
- ~100 million channels

*t*t**resonances, semi-leptonic**

- Several models predict heavy resonances decaying into top pairs. Benchmark models used:
 - Narrow width leptophobic topcolor Z' boson with $\Gamma/m \sim 1.2\%$
 - Wide width Kaluza-Klein gluon with $\Gamma/m \sim 15\%$
- Resolved analysis requires at least four 'thin' jets (R=0.4), at least one b-tag, isolated lepton, missing E_T
 - Optimized for low masses (up to 1 TeV)

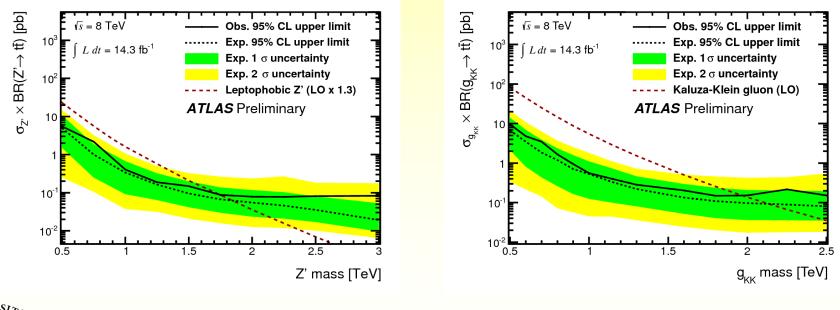

- Boosted analysis requires one b-tagged jet (leptonic side), one 'fat' jet (R=1.0) on hadronic side
 - Better performance at high masses (merged jets) ISMD13 conference 19 September 2013, T. Cornelissen


ATLAS-CONF-2013-052

tt resonances, analysis strategy

- Discriminant: reconstructed *tt* mass
- Event reconstruction:
 - In boosted, no ambiguities
 - In resolved, assignment of jets and p_z of neutrino by minimizing a χ² function
- Dominant systematics: tt cross section, JES, b-tagging, PDFs

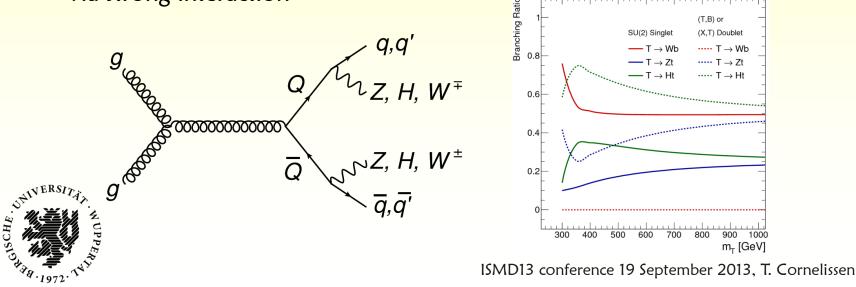
e+μ channel	resolved	boosted	
Prediction	283k ± 39k	5.6k ± 1.2k	
Data	280251	5122	



P 5

tt resonances, limit setting

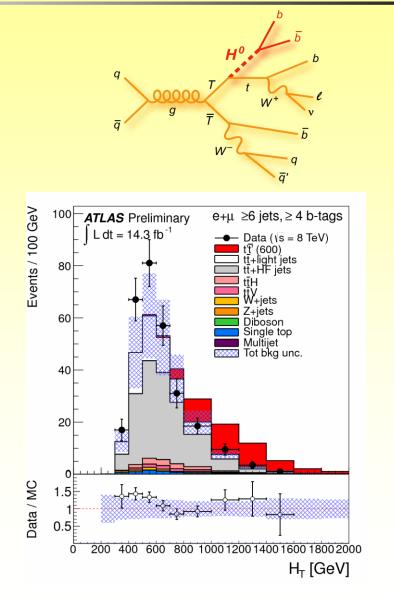
- Data/prediction agreement scanned over the full *tt* mass range
- Bayesian exclusion limits placed
- Z' excluded at 95% CL between 0.5 TeV and 1.8 TeV
- Kaluza-Klein gluon excluded at 95% CL between 0.5 TeV and 2.0 TeV



Vector-like quarks, theory

- Observation of SM-like Higgs boson at 126 GeV severely constrains minimal perturbative fourth generation model
- Compelling alternative: vector-like quarks which are postulated, for instance, by models addressing the hierarchy problem without SUSY
 - Little Higgs models, extra dimension models, ...

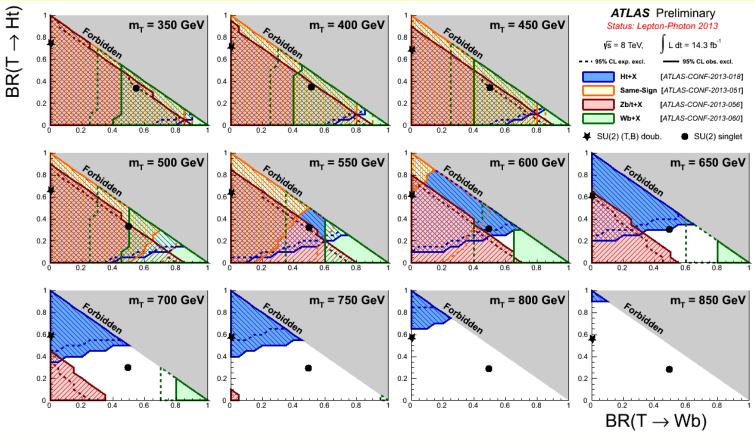
- Left-handed and right-handed components transform the same way under SU(2)×U(1)
- Cancel quadratic divergences of Higgs mass in the top loop
- Dominant production mechanism at 7 TeV and 8 TeV: pair production via strong interaction



Vector-like quarks, analysis strategy

- Several different final states possible in VLQ models: Ht + X, same sign dilepton, Zb/t + X, Wb + Z
- Ht + X analysis requires at least 6 jets, of which at least 2 are b-tagged
- Discriminant: total transverse momentum H_T
- Dominant systematic uncertainties: btagging efficiency, jet energy calibration, modeling (especially *tt* + hf)

$$H_T = \sum_j p_T^j + p_T^l + E_T^{miss}$$

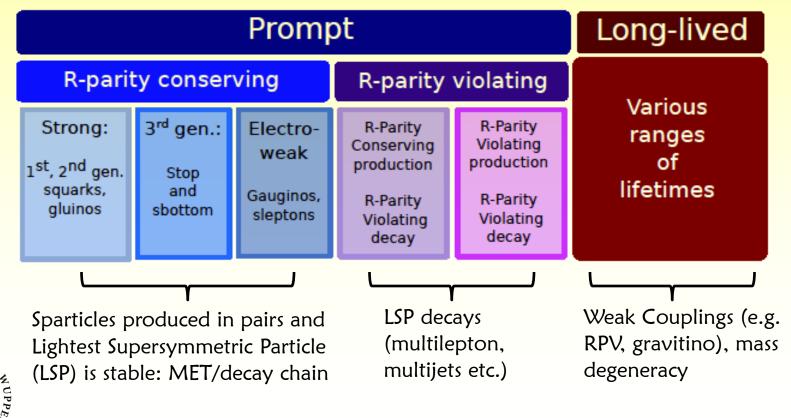


ISMD13 conference 19 September 2013, T. Cornelissen

Vector-like T quarks, limits

- For each mass point m_T , calculate excluded region in branching ratio plane (T \rightarrow Ht vs. T \rightarrow Hb)
- Vector-like T quark masses in the range 350-550 GeV are completely excluded
 - B quark mass limits in backup slides

ISMD13 conference 19 September 2013, T. Cornelissen

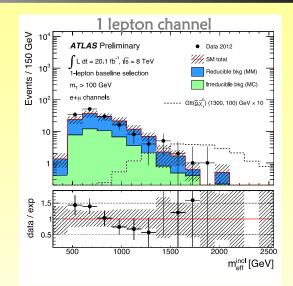


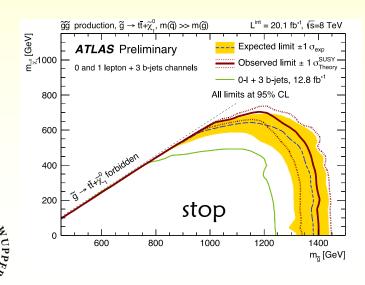
SuperSymmetry

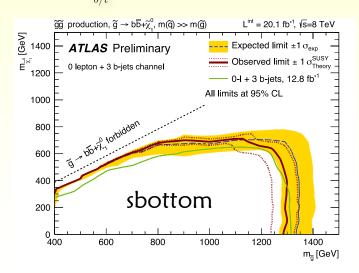
- SuperSymmetry (SUSY) postulates the existence of 'sparticles', each with Spin(S) differing by ½ from that of its SM partner
- Sparticles decay into SM particles like leptons, photons, b/c-jets, ...
- Production and decay modes organized as

P 10

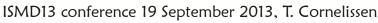
¥8.1972.5



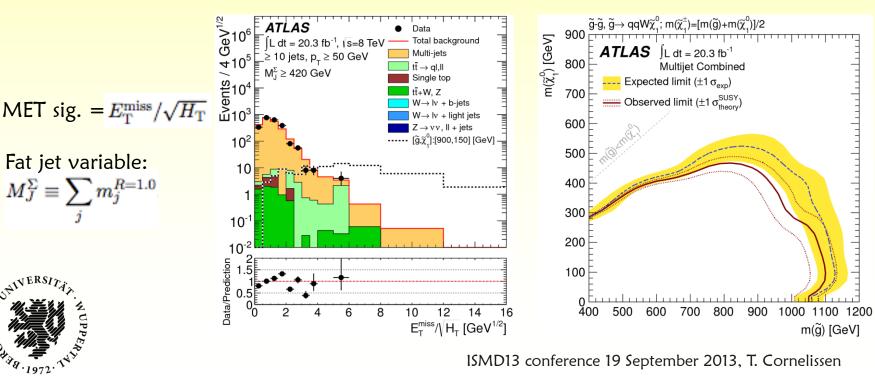

⁷ Gluino-mediated stop/sbottom production


- Require \geq 3 b-jets + 0-1 leptons + MET
- Most powerful search for high gluino mass
- Jet + MET trigger

¥8.1972.


- Reducible bkg ($t\bar{t}$ +fake b's) from matrix method
- Irreducible bkg ($t\bar{t}+b\bar{b}$, $t\bar{t}+V$) from MC
- Also powerful for direct sbottom search

b/t

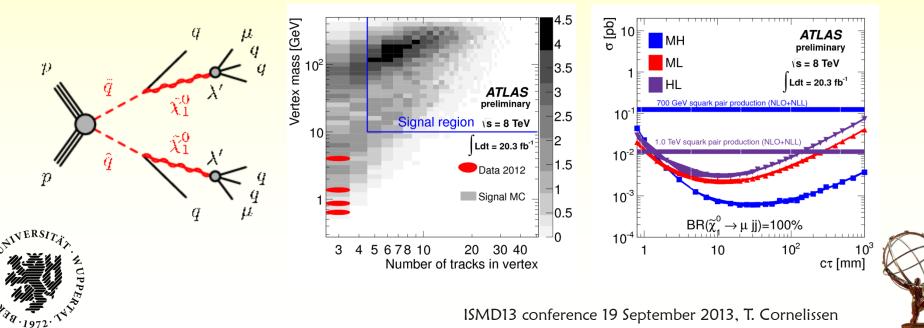


arXiv:1308.1841 Gluino pair production with many jets

Require 0 leptons, 7-10 jets, MET

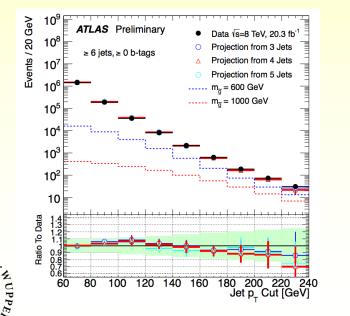
P 12

- Using jet-only trigger allows lower MET cut (~50 GeV)
- Data-driven multi-jet background method (MET significance independent of jet multiplicity)
- Jet $p_T > 50$ (80) GeV, MET sig. > 4 GeV^{1/2}
- SRs w / wo b-tags and w / wo fat jets

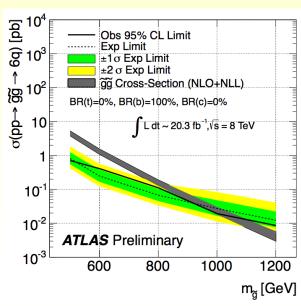


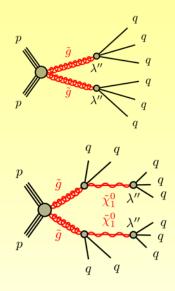
qqWp

ISMD13 conference 19 September 2013, T. Cornelissen


RPV decays giving large track multiplicity

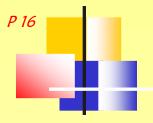
- R-Parity violation can give rise to particles with long lifetimes (picoseconds, nanoseconds), decaying far away from the primary interaction
- Search for high track multiplicity, high-mass displaced vertex in association with a muon ($p_T > 55$ GeV)
 - Requires 're-tracking' to find tracks with large impact parameters
- To reduce background from hadronic interactions, vertex is required to be in low density material region (material veto)
- Background is small ~0.02 ± 0.02


RPV decays giving large jet multiplicity


- RPV coupling can allow LSP to decay to 3 quarks → many jets in final state
- Analysis carried out for ≥6 and ≥7 jet signal regions with and without b-jet requirements
- Background normalized to data in lower jet multiplicity CRs and extrapolated to SR with MC
- Systematic uncertainties measured in data using multiple validation regions

P 14

¥8.1972.



Conclusions

- ATLAS is looking for physics beyond the Standard Model in many different ways
- So far, no SUSY or other exotic phenomena have been observed yet
- ATLAS will continue to analyse the LHC Run 1 data during the long shutdown, using the full ~21 fb⁻¹ dataset as much as possible
- Upcoming Run 2 with much higher luminosity and collision energy will greatly extend the discovery reach of many searches

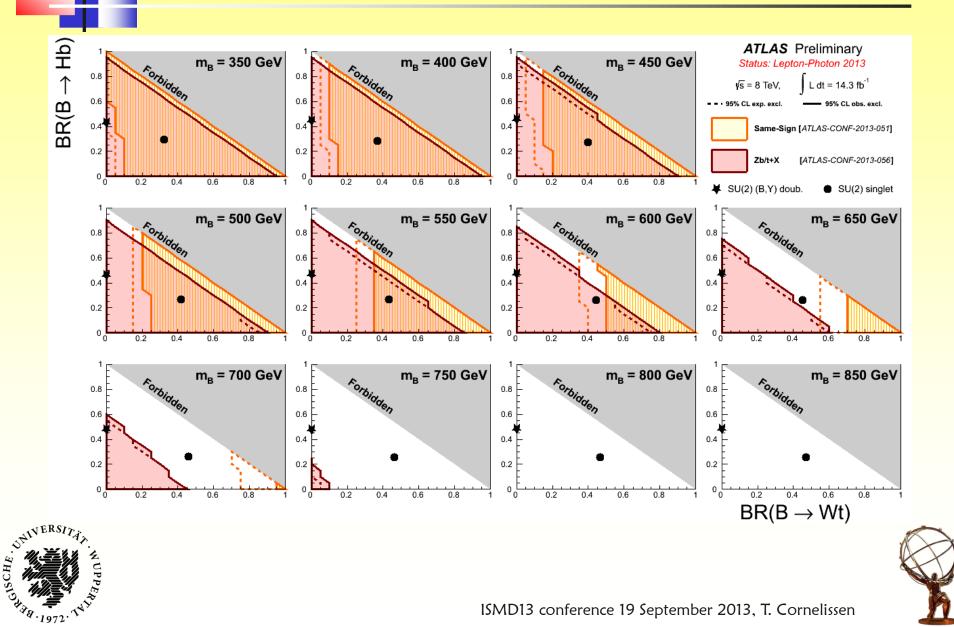
Backup

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

|--|--|

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$


	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb	$\int \mathcal{L} dt = (4.0 - 22.5) \mathrm{IO}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM} (\text{bino NLSP}) \\ \text{GGM} (\text{mino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino NLSP}) \\ \text{GGM} (\text{higgsino NLSP}) \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-062 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{1} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV m($\tilde{v}_1^0) < 600 \text{GeV}$ ğ 1.1 TeV m($\tilde{v}_1^0) < 350 \text{GeV}$ ğ 1.34 TeV m($\tilde{v}_1^0) < 400 \text{GeV}$ ğ 1.3 TeV m($\tilde{v}_1^0) < 300 \text{GeV}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow t \tilde{\chi}_1^+ \\ \tilde{t}_1 \tilde{t}_1(\text{light}), \ \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{light}), \ \tilde{t}_1 \rightarrow V b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{medium}), \ \tilde{t}_1 \rightarrow V \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{medium}), \ \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{heav}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{heav}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1 - 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L_{\mathbf{R}}} \tilde{\ell}_{L,\mathbf{R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \ell_{1} \nu \tilde{\ell}_{1} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^+ \\ \text{Stable, stopped } \tilde{g} \ \text{R-hadron} \\ \text{GMSB, stable } \tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(, \\ \text{GMSB, } \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_1^0 \\ \tilde{q} \tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu \ (\text{RPV}) \end{array}$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow e \widetilde{v}_{\mu}, e \mu \widetilde{v} \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow \tau \tau \widetilde{v}_e, e \tau \widetilde{v} \\ \widetilde{g} \rightarrow q q \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \widetilde{t}_1 \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ 4 \ e, \mu \\ \tau \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (\text{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ) $\sqrt{s} = 7 \text{ TeV}$	0 2 <i>e</i> , µ (SS) 0 √s = 8 TeV	4 jets 1 <i>b</i> mono-jet $\sqrt{s} = 1$	- Yes Yes 8 TeV	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV m(χ)<80 GeV, limit of <687 GeV for D8 10 ⁻¹ 1 Mass scale [To/l]	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	full data	artial data	full	data		Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

		ATEAS EXOLICS	Searches • 35 /6 CE Lower Linnis (Stat	us. May 2013)
	Large ED (ADD) : monojet + $E_{\tau,miss}$	$l = 4.7 \text{ fb}^{-1} 7 \text{ TeV} [1210.4491]$	4.37 TeV M _D (δ=2)	
	Large ED (ADD) : monophoton + $E_{T,miss}$	L=4.7 fb , 7 feV [1210.4491] L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (δ=2)	
\$	Large ED (ADD) : diphoton & dilepton, $m_{\gamma\gamma/II}$	L=4.6 fb , 7 feV [1203.4625] L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M _S (HLZ δ=3,	NLO) ATLAS
Extra dimensions	UED : diphoton + $E_{T,miss}$	L=4.7 fb , 7 feV [1211.1150] L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact. scale R ⁻¹	Preliminary
SI	S^{1}/Z_{2} ED : dilepton, m_{\parallel}	L=4.8 fb , 7 feV [1209.0753] L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 TeV M _{KK} ~ R ⁻¹	
en	$S_2 \ge D$. dilepton, m_{\parallel} RS1 : dilepton, m_{\parallel}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.47 TeV Graviton mass (k/M _{PI}	- 0.1)
3	PS1 · WW resonance m		1.23 TeV Graviton mass $(k/M_{Pl} = 0.1)$	- 0.1) r
ijo	RS1 : WW resonance, m _{T,NN} Bulk RS : 77 resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]		$Ldt = (1 - 20) \text{ fb}^{-1}$
La I	Bulk RS : ZZ resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 Gev Graviton mass (k/M _{PI} = 1.0)	J Loi - (1 - 20,10
xt	RS g \rightarrow tī (BR=0.925) : tī \rightarrow I+jets, m	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 TeV g _{KK} mass	s = 7, 8 TeV
Ш	ADD BH $(M_{TH} / M_D = 3)$: SS dimuon, $N_{ch, part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (δ=6)	
	ADD BH $(M_{TH}/M_D=3)$: leptons + jets, Σp_T	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (δ=6)	
	Quantum black hole : dijet, $F_{y}(m_{ij})$	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4.11 TeV M _D (δ=6)	
_	qqqq contact interaction : $\hat{\chi}(m)$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	7.6 TeV Λ	
0	qqll Cl : ee & μμ, <i>m</i>	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]		A (constructive int.)
	uutt CI : SS dilepton + jets + E _{T,miss}	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV ∧ (C=1)	
	Ζ' (SSM) : <i>m</i> _{ee/μμ}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass	
	Z' (SSM) : m _{et}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
1	Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+jets, m_{i}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass	
\geq	W' (SSM) : m _{Telu}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass	
	W' $(\rightarrow tq, q_=1)$: m_{i_1}		430 GeV W' mass	
	$W'_{R} \rightarrow tb, LRSM): m_{tb}^{H}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mass	
~	Scalar LQ pair (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 ^{er} gen. LQ mass	
Q.	Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 Gev 2 nd gen. LQ mass	
Τ	Scalar LQ pair (β =1) : kin. vars. in $\tau\tau j$, $\tau v j$	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3 rd gen. LQ mass	
·····		L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass	
New quarks	4 th generation : t't' \rightarrow WbWb 4th generation : b'b' \rightarrow SS dilepton + jets + $E_{T,miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV b' mass	
lei	Vector-like quark : TT \rightarrow Ht+X	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 GeV T mass (isospin doublet)	
< 16	Vector-like quark : CC, mivg	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3, coupling	v = v lm
	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* mass	$\mathbf{k}_{qQ} = \mathbf{v}_{fHQ}$
it. n.	Excited quarks : dijet resonance, m	L=2.1 fb , 7 lev [1112.3580] L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mass	
Excit. ferm.	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 7 TeV [1301.1583]	870 Gev b* mass (left-handed coupling)	
Ш×	Excited leptons : I-γ resonance, m		2.2 TeV I* mass (A = m(I*))	
	Technickadrops // STC) : dilenton m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]		
	Techni-hadrons (LSTC) : dilepton, $m_{ee/\mu\mu}^{\gamma}$ Techni-hadrons (LSTC) : WZ resonance (IvII), m_{WZ}^{γ}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV $\rho_{\rm T}/\omega_{\rm T}$ mass $(m(\rho_{\rm T}/\omega_{\rm T}) - m(\pi_{\rm T}) = M_{\rm W})$	- 4 A(- \)
		L=13.0 fb", 8 TeV [ATLAS-CONF-2013-015]	920 GeV $\rho_{\rm T}$ mass $(m(\rho_{\rm T}) = m(\pi_{\rm T}) + m_{\rm W}, m({\rm a}_{\rm T}) = 0$	$= 1.1 m(\rho_{T}))$
1	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass $(m(W_R) = 2 \text{ TeV})$	
Othel He	eavy lepton N [±] (type III seesaw) : Z-I resonance, m _{ZI}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013*친19] ^V	N [±] mass ($ V_e = 0.055$, $ V_\mu = 0.063$, $ V_\mu = 0$)	
õ	$H_{L}^{\pm\pm}$ (DY prod., BR($H_{L}^{\pm} \rightarrow II$)=1) : SS ee ($\mu\mu$), m_{L}^{\pm}		409 GeV H ^{±±} mass (limit at 398 GeV for μμ)	
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Scalar resonance mass	
	charged particles (DY prod.) : highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 Gev mass (q = 4e)	
Mag	gnetic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 GeV mass	
		10 ⁻¹	1 10	10 ²
		10		
*0.1				Mass scale [TeV]
*Only	/ a selection of the available mass limits on new states or	r phenomena shown		• •

Vector-like B quarks, limits

