

Hadronic final states in high-p_T QCD with the CMS detector

Suvadeep Bose

University of Nebraska Lincoln (On behalf of CMS collaboration)

ISMD 2013 Chicago

September 16, 2013

- Inclusive Jet production
 - at 7 TeV, at 8 TeV
 - AK5/AK7 ratio
- Dijet Production
 - Differential cross section at 7 TeV, at 8 TeV
 - Dijet mass and jet substructure
- Multi-jet Production
 - Colour coherence
 - 3-Jet Mass cross section
 - 3-jet to 2-jet cross section Ratio
 - Measurement of α_S

All data from published results are posted on the Durham database: <u>http://hepdata.cedar.ac.uk/</u>

For all public results in CMS Standard Model Physics: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

\diamond structure of the proton

 $\circ~$ encapsulated into the universal PDF's

ISMD 2013

 \diamond hard scatter

○ evaluated in perturbation theory

♦ parton shower & hadronization ○ initial and final state radiations

♦ multiple parton scattering & underlying event activity

 \circ approximated by MC porgrams with few tunable parameters

- □ It is interesting
 - very rich theory: deserves exploration and understanding
- ☐ It is inevitable
 - hadron collisions: QCD is always present
- Important background for new physics searches
 - enormous cross section: QCD can hide many possible signals of new physics
- Introduces uncertainties on other measurements
 - e.g. uncertainties on the PDFs affect the Higgs properties
- With LHC data
 - probing new territory

Total weight 14000 t Diameter 15 m Length 28.7 m

CMS: the detector

ECAL 76k scintillating PbWO₄ crystals

HCAL Scintillator/brass Interleaved ~7k ch

3.8T Solenoid

YB1.

ENDCAPS 473 Cathode Strip Chambers (CSC) 432 Resistive Plate Chambers (RPC)

MUON

IRON YOKE

YE1.3

Preshower Si Strips ~16 m² ~137k ch

> Foward Cal Steel + quartz Fibers ~2k ch

Pixel Tracker ECAL HCAL Muons Solenoid coil

Pixels & Tracker Pixels (100x150 μm²) ~ 1 m² ~66M ch Si Strips (80-180 μm) ~200 m² ~9.6M ch

Br

MUON BARREL

250 Drift Tubes (DT) and 480 Resistive Plate Chambers (RPC)

ISMD 2013

Thanks LHC for Fantastic 3 years!

CMS Integrated Luminosity, pp

ISMD 2013

Jet Reconstruction

Particle-Flow (PF) algorithms use: e, μ , γ , charged & neutral hadrons as building blocks for jets, b-jets, τ 's, ν (miss E_T)

□ Fixed cone algorithms:

- ♦ Iterative Cone (CMS) / JetClu (ATLAS)
- ♦ Seedless Infrared Safe Cone (SISCone)
- Successive recombination algorithms:

$$d_{ij} = p_{T,i}^{2p}$$
 $d_{ij} = \min(p_{T,i}^{2p}, p_{T,j}^{2p}) \frac{\Delta R_{ij}^2}{D^2}$

- Soft particles will first cluster with hard particles before among themselves
- Almost a cone jet near hard partons
- No merge/split

ISMD 2013

uncertainty ~1% for central

high-pT jets

- Jet Energy Correction is necessary to measure the correct energy spectrum of Jets
- The main three type of corrections required are OffSet (pile up subtraction), Relative (for η dependent response) and Absolute (for p_{τ} dependent response) + Residual corrections. [JINST 6 (2011) P11002] **JEC (Jet Energy Correction)**
 - Offset -> Subtracting
 - Relative -> Dijet balance
 - Absolute $\neg \gamma$ + jet and Z + jet (p_T balance, MPF)

Inclusive Jet Production

- Inclusive Jet Cross Section @ 7 TeV [QCD-11-004]
 Phys. Rev. D 87 (2013) 112002
- Inclusive Jet Cross Section @ 8 TeV [SMP-12-012, FSQ-12-031]
- Inclusive jet AK5/AK7 cross section ratio @ 7 TeV [SMP-13-002]

The Legacy Measurement

□ Inclusive jet production probes the dynamics of QCD

- counting the number of jets as a function of rapidity and p_T stringent test of QCD
- PDFs, strong coupling constant, perturbative calculations

ISMD 2013

from the data [13].

Suvadeep Bose

10

10

p_T (GeV/c)

10

Inclusive Jet Differential Cross section (a) 7 TeV

2000

- Double differential Inclusive jet crosssection measured from $p_T 0.1$ to 2 TeV
- ⁵⁰⁰ ⁶⁰⁰ Jet p₋ (GeV) Measured cross sections agree with the predictions of perturbative QCD at next-to-leading order obtained with five different PDF sets
- Theoretical and experimental uncertainties are comparable, even at the limits of the experimental phase space

0.5

200

300

400

Inclusive Jet Differential Cross section @ 8 TeV

□ Measurement at 8 TeV up to |y| = 4.7
 □ O(14) magnitude in cross section
 □ Comparisons to pQCD NLO⊗NP
[NP: corrections for non-perturbative effects (MPI and hadronization): 20% (~100 GeV) → 1% (~2.5 TeV)]

Vebraska

SMP-12-012 FSQ-12-031

Theory Comparisons

Experimental uncertainty:

- JES(12%-30%),
- Luminosity(4.4%)
- Unfolding(1%-10%)
- Total: 15%-40%

Theory uncertainty:

- **PDF(5%-30%)**
- Scale(5%-40%)

PDF uncertainty for CT10 in outer bins 100%

Comparison among Different PDFs

- □ Data over theory compared to ratio with other PDF sets for CT10
- The theory predictions are computed for five different PDF sets, viz. ABM11, HERA1.5, CT10, MSTW2008, NNPDF2.1
- □ In the central rapidity region (0.0<|y|<0.5) different theory predictions are in agreement with data except ABM11</p>
- The fluctuations are covered by total theoretical and experimental uncertainty bands

□ Motivation: AK5/Ak5 ratio gives insight to QCD effect beyond fixed order □ Measurement at \sqrt{s} =7 TeV with different jet sizes R=0.5 (AK5), 0.7 (AK7) □ Ratio of cross sections R(0.5, 0.7) vs p_T and rapidity

- □ Several systematic uncertainties cancel in ratio
- $\hfill\square$ The ratio gradually increases towards unity with increasing Jet- p_T
- pQCD predictions without NP corrections in clear disagreement with data
- Powheg(NLO+PS) prediction describes the data best

Dijet Production

- Dijet Differential Cross Section
 @ 7 TeV [QCD-11-004]
 Phys. Rev. D 87 (2013) 112002
- Dijets and V+jets, jet mass and substructure at 7 TeV [SMP-12-019]
 JHEP 05 (2013) 090

Dijet Cross Section @ 7 TeV

QCD-11-004

Agreement with pQCD@NLO⊗NP

5000

□ Differential distributions in jet mass for inclusive dijet events, defined through the anti-k_T algorithm for a size parameter of 0.7 for jets groomed through filtering, trimming, and pruning.

pileup effects contribute to a more rapid and widespread use of these techniques in future high-luminosity runs at the LHC.

- Better agreement at larger jet masses.
- Trimming and pruning algorithms provide an important benchmark for their use in searches for massive particles.
- More details in Ivan Marchesini's talk on Jet substructure (Today at 3 pm)

ISMD 2013

MultiJet Production

- Colour Coherence [SMP-12-010]
- 3-Jet Mass cross section
 [SMP-12-027]
- 3/2 Inclusive Jet Cross section Ratio [QCD-11-003] <u>arXiv:1304.7498</u>
- Measurement of α_{s} [SMP-12-027, QCD-11-003]

- In QCD color coherence effects are due to the interference of soft gluon radiation emitted along color connected partons
- □ In LO model with FSR the 3rd jet tends to be between second jet and proton remnant
- ❑ Measure the angular distribution of softer 3rd jet around the 2nd highest-p_T jet in the event

$$\beta = \tan^{-1} \left[\frac{\operatorname{sign}(\eta_2) \Delta \phi_{32}}{\Delta \eta_{32}} \right]$$

 β =0: 3rd jet between 2nd & closest proton remnant β = π : 3rd jet between 2nd & far most proton remnant

- Ideally, e+ e- collider is the best place to do the measurement
 - No color interference from the initial state
- In pp, both initial and final states have color constituents
 - Complicate the signatures
 - Comparison with MC is crucial
- Compare data to event generators with different color coherence implementations

Colour Coherence Results

ISMD 2013

3-Jet Mass Cross Sections @ 7 TeV

ISMD 2013

Suvadeep Bose

3-jet over 2-jet Cross Section Ratio

Measurement of α_s

- Extract α_8 from the R₃₂ and 3-jet mass cross section measurements
 - Results are comparable with world average $\alpha_{s}(M_{z})=0.1184 \pm 0.0007$
 - For the first time probing the > 1 TeV scale, reaching upto ~ 1.5 TeV
 - Dominated by theoretical uncertainties (PDF and scale)

 $\begin{array}{l} \mathsf{R}_{32}: \ \alpha_{\mathrm{S}}(\mathsf{M}_z) = 0.1148 \pm 0.0014 \ (\text{exp.}) \pm 0.0018 \ (\mathsf{PDF})^{+0.0050} \ _{-0.0000} \ (\text{scale}) \\ \textbf{3-jet mass:} \ \alpha_{\mathrm{S}}(\mathsf{M}_z) = 0.1160^{+0.0025} \ _{-0.0023} \ (\mathsf{Exp.} \ \mathsf{PDF}, \ \mathsf{NP})^{+0.0068} \ _{-0.0021} \ (\text{scale}) \end{array}$

- Significant ongoing effort to improve our understanding of QCD
 - both experimental and theoretical
 - rich QCD programs pursued at LHC
- □ Large datasets available
 - LHC has provided access to a huge phase space
 - will take a long time to analyze and digest all the data on tape
- Much recent progress
 - jet data have considerable impact on gluon and u/d quark PDFs
 - measurements of α_s at the TeV scale for the first time
- Comments on the theoretical tools
 - in many areas the exp. precision reached makes the NLO predictions insufficient: NNLO needed for further progress!!
 - with some tuning of the parameters, the LO ME or NLO interfaced with PS models provide good description of the data