

Universität Hamburg

Boosted Heavy Particles and Jet Substructure with the CMS Detector

> XLIII INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS

Ivan Marchesini (Uni. Hamburg), ISMD13, 16 Sep 2013, Chicago

Introduction

Boosted regime: classical selection methods fail.

→multiple, well separated jets fromW, Higgs or top hadronic decays

→typical jet collection: AK5 (anti-k_T, R=0.5)

→decay products from heavy particles merged into large fat-jets

→jet substructure provides fundamental selection tools (top-tagging, W-tagging...)

→typically, larger jet collections: CA8
(Cambridge-Aachen, R=0.8) or CA15

Substructure Techniques

W-Tagging [CMS-PAS-JME-13-006]

Based on jet mass pruning (Ellis, Vermillion, Walsh [arXiv:0903.5081], [CMS-PAS-SMP-12-019]).

Starting with CA8 jets.

 Re-cluster jet and apply requirements when merging clusters *i* and *j* into cluster *p*.
 Veto soft and large angle recombinations, removing softer component if:

- $\rightarrow min(p_T^{i}, p_T^{j})/p_T^{\rho} < 0.1$
- $\Delta R^{ij} > 0.5 \ m^{orig}/p_{\tau}^{orig}$

W-tagging: •2 pruned subjets •pruned jet mass [60,100] GeV

signal: resonance (600 GeV) \rightarrow WW 4 QCD background

W-Tagging: Additional Observables [CMS-PAS-JME-13-006]

Pruning can be combined with additional observables:

- → mass-drop μ
- → N-subjettiness τ_N : τ_2/τ_1 used for Wtagging
- → also examined: Qjet volatility Γ_{QJet}, generalized energy correlation function C₂^β

N-subjettiness shows the best single discriminating power.

Observables are correlated: moderate improvement with multivariate combination using TMVA.

efficiency: $H \rightarrow WW$, $m_{H} = 600 \text{ GeV} 5$ mistag: QCD

W-Tagging: MC vs Data [CMS-PAS-JME-13-006]

Detailed data/MC comparisons for all substructure observables Different topologies and generators considered

general good agreement, more observables in the backup

W-Tagging: MC vs Data [CMS-PAS-JME-13-006]

Scale factors (SF) to correct for residual discrepancies.

Extract:

→W-jet mass scale (peak position):
•data: 84.5±0.4 GeV
•MC: 83.4±0.4 GeV

→W-jet mass resolution:
•Data: 8.7±0.6 GeV
•MC: 7.5±0.4 GeV

→data/MC correction for W-tagging efficiency (SF):
 •0.905 ± 0.08
 (operating point: m_{pruned} cut + τ_o/τ_o<0.5)

Top-Tagging [CMS-PAS-JME-10-013]

Based on JHU top-tagger (Kaplan et al [PRL 101 (2008) 142001]):

→ start with CA8 jets
→ reverse clustering sequence and examine clusters pairwise
→ clusters are split if:

 $\Delta R > 0.4 - 0.0004 \, p_{\tau}^{\ C}$

p_τ^C is the parent cluster p_τ → low p_τ clusters removed if:

 $p_{T} < 0.05 p_{T}^{jet}$

Performance [CMS-PAS-B2G-12-005]

QCD

Mistag rate can be measured from data, using **anti-tag method**:

- \rightarrow two high-p_T jets, p_T >400 GeV
- → anti-tag one jet, inverting min pairwise mass requirement
- → top-tag of other jet is a mistag

B-Tagging in Boosted Topologies [CMS-PAS-BTV-13-001]

B-tagging at CMS traditionally developed on isolated AK5 jets, mostly suitable for the non-boosted regime.

First study at LHC dedicated to b-tagging in the boosted regime. Benchmark topologies:

Boosted top, hadronic decay: →selected using HEPTopTagger [JHEP 1010 (2010) 078], CA15 jet collection

Boosted Higgs→bb:
→studies based on pruned CA8 jets

 Boosted studies based on the Combined Secondary Vertex CSV tagger: likelihood ratio combination of secondary vertex + single track information.
 CSV developed on AK5 jets: currently no dedicated re-training for the boosted regime.

Boosted B-Tagging Scenarios [CMS-PAS-BTV-13-001]

- Two scenarios considered:
 - → subjet CSV:
 - CSV b-tagger applied to subjets (2 btags for Higgs-tagging, ≥1 for toptagging)
 - → fat-jet CSV:
 - CSV b-tagger applied to the Higgs/top candidate fat-jet

Subjet b-tagging

generally performs better: chosen as **default technique**

Fat-jet b-tagging suitable at **very high** p_{T} where subjets start to

where subjets start to merge

e.g. Higgs channel

Subjet B-Tagging Validation on Data [CMS-PAS-BTV-13-001]

Control samples Boosted top:

→ µ+jets, semileptonic ttbar

Boosted Higgs: challenging definition of the control sample

→ similar topology: gluon splitting jets, two closeby b's

•Good data/MC agreement for b-tagging observables.

•All observables cross-checked (backup).

•Nothing pathological in the boosted regime.

Pile-Up Jet-ID [CMS-PAS-JME-13-005]

Traditional PU subtraction: subtract charged particles not pointing to the primary vertex.

>PU Jet-ID:

- A exploit also non-tracking quantities (jet shape) to extend PU rejection outside of the tracking acceptance
- multivariate discriminant

distribution of Particle-Flow jet-constituents

time pile-up simulation

13

Pile-Up Jet-ID [CMS-PAS-JME-13-005]

Performance:

- → tag-and-probe method from Z (→µµ) + jets events, where probe is jet recoiling against Z
- data/MC agreement within 10%, corrected using SF
- Several applications:
 - → e.g. : extensions of jet vetos to low p_T (Higgs searches)

Quark-Gluon Discrimination [CMS-PAS-JME-13-002]

Quark/gluon discrimination: similarly to PU Jet-ID, combine discriminating variables in likelihood

Quark and gluon have different colour interaction:

+ multiplicity+ widthmore homogeneousenergy sharing

Variables:

→multiplicity: charged, neutral, total

spread:
 η–φ spread
 major η–φ matrix axes σ₁
 minor η–φ matrix axes σ₂

→energy sharing: hardest candidate offcentering/ energy

$$p_{\rm T}D = \frac{\sqrt{\sum_i p_{{\rm T},i}^2}}{\sum_i p_{{\rm T},i}}$$

combined in likelihood

Quark-Gluon Discrimination [CMS-PAS-JME-13-002]

Quark/gluon discrimination: similarly to PU Jet-ID, combine discriminating variables in likelihood

Quark and gluon have different colour interaction:

+ multiplicity
+ width
more homogeneous
energy sharing

Single-variable and combined likelihood discrimination power

Quark-Gluon Discrimination [CMS-PAS-JME-13-002]

- > Validation in two different samples:
 - > Z+jets: quark enriched
 - di-jets: gluon enriched

Overall good data/MC agreement. Some discrepancy at low p_T in di-jets, probably due to gluon fragmentation mismodeling. Covered by systematics.

Useful tool for several searches:

- many channels with jets are flavor specific
- → pioneer analyses at CMS:

Higgs→ZZ→2l2q [JHEP 04 (2012) 036] VBF Higgs→bb [CMS-PAS-HIG-13-011]

17

Searches Using Substructure

Resonances→ttbar All-Hadronic Final State [CMS-PAS-B2G-12-005/13-001, arXiv:1309.2030]

- Flagship for boosted searches for new physics.
 Sensitive to several models. Considered:
 - → extra dimensions, RS gluon
 - extended gauge, Z' narrow Γ/m=0.01 broad Γ/m=0.1
- Selection:
 - → 2 back-to-back high p_{T} jets
 - → both top-tagged

High-purity version of the analysis underway: reduce QCD with combination top-tagging+subjet b-tagging

exclusion limits from combination with semi-leptonic channel exclusion up to 2.7 TeV depending on the channel

B'-1/3 Bottom Partners [CMS-PAS-B2G-12-019]

Vector-like heavy quarks predicted by several theories:

- → little/composite Higgs models
- → extra dimenions
- Solution to the hierarchy problem.

Signal:

- → pair-produced B' with charge -1/3
- → decay modes: B'→tW, bZ, bH
- → all branching fractions

Selection:

- → single muon or electron
- substructure used in event categories based on number of V-tags (V=W/Z/H):
 - CA8 jet, p_⊤≥ 200 GeV
 - mass drop μ < 0.4
 - 2 pruned subjets
 - m_{pruned} [50,150] GeV

Top Partners [CMS-PAS-B2G-12-012 and 015]

- [CMS-PAS-B2G-12-015] Signal:
 - > pair-produced T' with charge 2/3
 - → decay modes: T'→tH, tZ, bW
 - → all branching fractions

Two final states:

- → multilepton: counting experiment, no substructure
- single letpon: multivariate analysis, number of W- and top-tags enter the BDT discriminant.

High Mass Dibosons [CMS-PAS-EXO-12-021/024]

Predicted by several models. Here considered:

→ **bulk graviton** production: $G_{bulk} \rightarrow WW \rightarrow I + jet + MET$

Outlook

Substructure techniques

- major developments recently: subjet b-tagging, W-tagging, pileup jet-ID, gluon/quark discriminator, ...
- new results on top-tagging expected soon
- extensive data/MC comparisons: generally good agreement

Searches:

- increased number of analyses using substructure, beyond typical ttbar resonance searches
- searches exploiting powerful new tools (subjet b-tagging, new top-taggers, ...) expected before the end of the year

Semileptonic ttbar

Outlook

Substructure techniques

- major developments recently: subjet b-tagging, W-tagging, pileup jet-ID, gluon/quark discriminator, ...
- new results on top-tagging expected soon
- extensive data/MC comparisons: generally good agreement
- Searches:
 - increased number of analyses using substructure, beyond typical ttbar resonance searches
 - searches exploiting powerful new tools (subjet b-tagging, new top-taggers, ...) expected before the end of the year

Semileptonic ttbar

Additional Slides

Pruning can be combined with additional observables:

→ mass-drop

Pruning can be combined with additional observables:

→ mass-drop

mass-drop $\mu = m_1/m_{_{jet}}$ m_1 is the highest mass pruned subjet

Pruning can be combined with additional observables:

- → mass-drop
- → N-subjettiness τ_{N} : τ_{2}/τ_{1} used for W-

tagging

probability that jet is composed by N subjets

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\}$$

 $d_0 = \sum_k p_{T,k} R_0$, and R_0 is the original jet radius

Pruning can be combined with additional observables:

- → mass-drop
- → N-subjettiness $\tau_{_N}$: $\tau_{_2}/\tau_{_1}$ used for Wtagging
- → also examined: Qjet volatility Γ_{QJet} , generalized energy correlation function C_2^{β}

Pruning can be combined with additional observables:

→ mass-drop

• N-subjettiness
$$\tau_{N}$$
: $\tau_{2}^{\prime} \tau_{1}^{\prime}$ used for W-

tagging

→ Qjet volatility Γ_{QJet}

RMS (mass jet trees) / $\rm m_{_{jet}}$ where a jet is interpreted as a distribution of trees based on its clustering sequence

Pruning can be combined with additional observables:

- → mass-drop
- → N-subjettiness $\tau_{_N}$: $\tau_{_2}/\tau_{_1}$ used for W-

tagging

- \rightarrow Qjet volatility Γ_{QJet}
- → generalized energy correlation

function $\mathbf{C}_{\beta}^{\beta}$

$$C_2^{\beta} = \frac{\sum_{i,j,k} p_{Ti} p_{Tj} p_{Tk} (R_{ij} R_{ik} R_{jk})^{\beta} \sum_i p_{Ti}}{(\sum_{i,j} p_{Ti} p_{Tj} (R_{ij})^{\beta})^2}$$

based on momentum and pair-wise angles of particles within the jet

B-Quark Signatures

Life-time b-hadron → jets with: •secondary vertex •tracks with large impact parameter

Large mass, ~5 GeV

Fragmentation function:
high p₁ of the b-hadron relatively to jet p₁

B-decay produces often leptons: soft muon or electron within jet

CMS 2011 simulation preliminary, vs = 7 TeV udsg jet efficiency SSVH 10 * CS 10⁻² 10^{-3} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 b jet efficiency b-tagging algorithms ROC curves [JINST 8 (2013) P04013]

Several taggers implemented at CMS. Boosted studies based on the Combined Secondary Vertex CSV tagger:

- Ikelihood ratio combination of secondary vertex + single track information;
- → currently the best tagger in CMS, improvements ongoing.

B-Tagging at CMS

JTA

→jet-tracks association: static cone ∆R(tracks,jet) < 0.3</p>

→apply tight selection on tracks, mainly for pileup rejection

→determine b-tagging observables

→calculate b-tagging discriminators
 →several operating points defined for taggers, selecting different regions of purity/efficiency:

- loose L;
- medium **M**;
- tight **T**;

10% 1% 0.1% misidentification from light quarks/gluons

33

B-Tagging Algorithms

Boosted studies based on the Combined Secondary Vertex CSV tagger:

- → likelihood ratio combination of secondary vertex + single track information;
- currently the best tagger in CMS, improvements ongoing.

For performance measurements used also Jet-Probability JP tagger:

- Ikelihood estimate of the probability that the jet-tracks come from the PV, based on the IP significance of all jet-tracks;
- Calibrated on data from tracks with negative IP.

Higgs Channel

Based on CA8 jet collection: boosted regime for $p_{\tau} > 300$ GeV.

Signal: B' → bH pair production.
B-tagging studied on H → bb.

Inclusive mistag from QCD and mistags from hadronicallydecaying W/Z/top.

Subjet b-tagging based on pruned subjets:

→cut on pruned jet mass can be combined with b-tagging requirement (see next slides).

Top Channel

Based on CA15 collection, default for HEPTopTagger.

Large cone-size allows to reach lower p₁'s (~200GeV) without switching from merged-top to unmerged top selection.

Signal: T'→tH pair production. Consistency of the results checked also on SM ttbar production.

Inclusive mistag from QCD.

HEPTopTagger forces 3 filtered subjets: used for subjet btagging.

spread between top decay products (T' \rightarrow tH)
B-Tagging Performance

Higgs channel Subjet btagging performs better

Fat-jet btagging suitable at very high p_{τ}

Top channel

Overall subjet btagging performs better

medium boost regime

large boost regime

Tagging Performance

double b-tagging

CMS Simulation Preliminary, $\sqrt{s} = 8$ TeV

Higgs channel

Top channel

QCD mistag rate reduced up to a factor 10 with minor loss of efficiency

Double-b-tagging efficiency → H(120)→bb - - Z --- topW --- QCD CA R=0.8 75<m_{iet}<135 GeV/c² (pruned), Subjet CSVL 10⁻³ 100 200 300 400 500 600 700 800 900 1000 Fat jet p_ [GeV/c] CMS Simulation Preliminary, $\sqrt{s} = 8$ TeV 0.8 tagging efficiency HEPTopTagger 0.7 + >=1CSVL tag 0.6 + >=1CSVM tag 0.5 0.4 0.3 0.2 CA R=1.5 0.1 $T(1 \text{ TeV/c}^2) \rightarrow tH, \text{ Subjet CSV}$ 100 200 300 400 500 600 700 800 900 1000 0 Top p₋ [GeV/c]

tagging efficiency

Higgs tagging

Validation Sample: Higgs Channel

Challenging definition of the control sample. Similar topology: gluon splitting jets, two closeby b's clustered in the same fat-jet.

Event selection:

- → 1 CA8 jet, p₁>400 GeV, |η|<2.4;
- $\Delta R(subjets) > m_{iet}/p_T$: remove infrared unsafe configurations;
- → MC samples: inclusive and muon-enriched QCD, tt, $Z \rightarrow qq$.

Muon-tag to b-enrich subjets sample: require muon with p_{τ} >5GeV within subjet cone.

Sample of CA8 fat-jets enriched in gluon splitting, requiring **both subjets to be muon-tagged**: **Higgs-like sample**.

Validation Sample: Top Channel

ttbar semi-leptonic decays.

Leptonic decay:

- → isolated muon;
- → 1 standard b-tag.

Hadronic decay selected using HEPTopTagger.

MC samples: ttbar + all SM backgrounds (single-top, Z/W+jets).

Lifetime Tagger Method

Method based on Jet-Probability btagger. Advantage:

- JP discriminant can be defined for most jets (>90%);
- → calibrated on data.

Template fit to JP discriminant, before and after applying CSV. Discriminant shape from MC, while relative flavor fractions are free

parameters.

Tagging efficiency in data given by (C_b is fraction of jets for which JP computable): $\varepsilon_b^{tag} = \frac{C_b \cdot f_b^{tag} \cdot N_{data}^{tag}}{f_b^{before tag} \cdot N_{data}^{before tag}}$

B-tagging Scale Factor

LT method applied to individual muon-tagged subjets of CA8 fat jets (w/ and w/o the companion subjet b-tagged).

Very good agreement with the standard scale factors.

Results for the loose operating point of CSV.

Mistag Scale Factor

Measurement of mistag rate SF_{light} for CA8 subjets based on negative taggers, which use tracks with negative impact parameter.

Very good agreement with the standard scale factors.

Flavor Tag Consistency Method

Method based on distribution of number of b-tags for the 3 subjets of CA15 HEPTopTagged fat-jet: expected distribution fitted to data, with scale factors as free parameters.

Expected number n of tags for ttbar signal can be expressed as:

$$\langle N_n \rangle = \mathcal{L} \cdot \sigma_{t\bar{t}} \cdot \varepsilon \cdot \sum_{i,j,k} F_{ijk} \sum_{i'+j'+k'=n}^{i' \leq i,j' \leq j,k' \leq k} [C_i^{i'} \varepsilon_b^{i'} (1-\varepsilon_b)^{(i-i')} C_j^{j'} \varepsilon_c^{j'} (1-\varepsilon_c)^{(j-j')} C_k^{k'} \varepsilon_l^{k'} (1-\varepsilon_l)^{(k-k')}]$$

 $\rightarrow \varepsilon_{\mu}, \varepsilon_{\mu}, \varepsilon_{\mu}$ are the tagging efficiencies;

 $\rightarrow C^{a}_{b}$ are the binomial coefficients;

→Fijk are the fractions of events with i b-subjets, j c-subjets and k light-subjets: taken from MC.

>backgrounds included in the fit.

Fit Modalities

2 parameters fit:

→ σ_{tt}, SF_b are free parameters.
 Fixed SF_c = SF_b and fixed
 SF_{light} to SF_{light} for standard b tagging on AK5 jets.
 3 parameters fit:
 → σ_{tt}, SF_b and SF_{light} are free
 parameters. Fixed SF_c = SF_b.

Excellent data/MC agreement after fit of subjet btag multiplicity.

Post-fit distribution

Scale Factors

Measured SF_b for boosted top subjets are in agreement with standard SF_b for AK5 jets.

No significant deviation at high top-p_T of the measured SF_b.
 Mistag SF_{light} are in agreement with standard SF_{light} for AK5 jets.

-		CSVL	CSVM	CSVI
SF J	<i>SF</i> _b for non-boosted jets	1.010 ± 0.013	0.970 ± 0.013	$0.950 {\pm} 0.015$
	SF _b for HEPTopTagger subjets	1.003 ± 0.026	$0.979 {\pm} 0.023$	$0.960 {\pm} 0.036$
0.5	$150 \le p_{\rm T} < 350 {\rm GeV}/c$		$0.978^{+0.023}_{-0.023}$	
	$p_{\rm T} \ge 350 { m GeV}/c$	—	$0.993^{+0.034}_{-0.034}$	
pı dependence	$p_{\rm T} \ge 450 { m GeV}/c$	—	$0.997^{+0.067}_{-0.067}$	—
	<i>SF</i> _{light} for non-boosted jets	$1.080\substack{+0.063\\-0.072}$	$1.136\substack{+0.090\\-0.110}$	$1.088\substack{+0.039\\-0.086}$
SF	SF _{light} for HEPTopTagger subjets	1.185 ± 0.080	1.580 ± 0.47	_

Track Sharing

Cross-check of sharing of tracks selected for b-tagging between subjets.

Considere tracks in a cone of $\Delta R < 0.3$ around subjet axis (as used by CSV).

47

Track-sharing increases with p_T of the fat-jet. At very high boost, the level of track sharing becomes significantly large. One solution is to switch to fat-jet b tagging.

Mistag SF

B-tagging Observables

Checking data/Monte Carlo agreement for b-tagging quantities. Presentation ordering:

> Top channel validation: HEPTopTagger Subjets

Higgs channel validation: Multijet sample (CA8 jets)

Higgs channel validation: Multijet sample (CA8 muon-tagged subjets) Higgs channel validation: Multijet sample (double muon-tagged CA8 jets)

3D Impact Parameter

Secondary Vertex Multiplicity

SV Flight Distance Significance

Secondary Vertex Mass

Secondary Vertex Mass

Т'5/3 Top Partners [СМS-PAS-B2G-12-012]

Vector-like heavy quarks are part of several theories:

- → little/composite Higgs models
- → extra dimenions

Solution to the hierarchy problem.

Signal:

- pair-produced T' with charge 5/3
- → BR 100% **T'**→**tW**

Selection:

- → two same sign leptons
- → top-tagging
- → W-tagging (m_{pruned} [60,130] GeV)

Limits from event yields.

reconstruction of T' mass from all⁵⁵ channels

Т'5/3 Top Partners [СМS-PAS-B2G-12-012]

Vector-like heavy quarks are part of several theories:

reconstruction of T' mass from all⁵⁶ channels

Т'2/3 Top Partners [СМS-PAS-B2G-12-015]

Signal:

pair-produced T' with charge 2/3

→ decay modes: T'→tH, tZ, bW

→ all possible branching fractions

Combination of two analysis strategies:

Multivariate analysis, single lepton:

- → two event categories: with or without W-tag
- top-tagging applied
- → relevant observables combined in BDT:
 - multiplicity/p_T of reconstructed objects (lepton, jets, tagged jets...)
 - N of b-, W- and top-tags

Counting experiment, multilepton channel. No substructure.

BDT discriminant, single μ channel

B'-1/3 Bottom Partners [CMS-PAS-B2G-12-019]

Signal:

→ pair-produced B' with charge -1/3

→ decay modes: B'→tW, bZ, bH

→ all possible branching fractions

Selection:

- → single muon or electron
- → ≥4 AK5 jets, ≥1 b-tagged

→ event categories based on number of V-tags (V=W/Z/H):

- CA8 jet, p_⊤≥ 200 GeV
- mass drop μ < 0.4
- 2 pruned subjets
- m_{pruned} [50,150] GeV

S₊ distribution, for 1 V-tag category

Limits based on S_{T} distribution: $S_{T} = p_{T}^{lept} + p_{T}^{miss} + \sum p_{T}^{jets}$

High Mass Dibosons [CMS-PAS-EXO-12-021/024]

Predicted by several models. Here considered:

59

Dijet Mass (GeV)

 m_{pruped} [70,100] GeV, same τ_2/τ_1 cuts as above

High Mass Dibosons [CMS-PAS-EXO-12-021/024]

•G_{bulk} $\sigma \times BR_{WW}$ limits between 70fb and 3fb •G_{RS} \rightarrow WW excluded between [1.00,1.59] TeV •G_{RS} \rightarrow ZZ excluded between [1.00,1.17] TeV •W' \rightarrow WZ excluded up to 1.73 TeV

Pile-Up Jet-ID [CMS-PAS-JME-13-005]

Performance:

- → tag-and-probe method from Z (→µµ) + jets events, where probe is jet recoiling against Z
- data/MC agreement within 10%, corrected using SF
- Several applications:
 - → e.g. : extensions of jet vetos to low p_T (Higgs searches)

Event topologies considered

Benchmark signal: $X \rightarrow W_L W_L$, $M_X = 600 \ GeV$, $1 \ TeV$

Emanuele Usai BOOST13

W-Tagging: MC vs Data [CMS-PAS-JME-13-006]

Detailed data/MC comparisons for all substructure observables
Different topologies and generators considered

W-Tagging: MC vs Data [CMS-PAS-JME-13-006]

Detailed data/MC comparisons for all substructure observables Different topologies and generators considered

MVA correlations

Background (W+jets)

signal

Substructure variables: mass drop, μ

 $p_T = 250 - 350 \text{ GeV}$ (W+jet) - no pruned mass cut

Good discrimination power

 $p_T = 250 - 350 \text{ GeV}$ (W+jet) - pruned mass cut

Discrimination power reduced: correlation with mass cut

Emanuele Usai BOOST13

Substructure variables: N-subjettiness

Three variants considered:

- ▶ τ_2/τ_1 : one step optimization of the k_T subjet axes
- ▶ $\tau_2/\tau_1 k_T$ axes: no optimization
- pruned \u03c622/\u03c611: uses only pruned constituents + one pass optimization.

$$p_T = 400 - 600 \text{ GeV}$$

Performance in function of p_T

Performance studied for: $60 < m_{jet} < 100 \text{ GeV} + au_2/ au_1 < 0.5$

Efficiency vs p_T (W+jets topology)

- Iow p_T: W decay products begin to be reconstructed inside CA8 jets
- high p_T: detector resolution for jet substructures degrades, pruning remove too much of the mass of the W

Emanuele Usai BOOST13

Fake rate vs p_T (dijet topology)

drops at high p_T similarly to efficiency

Performance in function of number of vertices

Efficiency vs Nvtx (W+jets topology)

- slight degrade of performance
- jet pruning fails to remove all soft contributions

Fake rate vs Nvtx (dijet topology)

 constant behavior with respect to Nvtx

08/13/13

Philip Harris BOOST

Quark and Gluons w/Substructure

- Quark/gluon separation vs W same after cuts
 - Mass cut more effective on quark separation
 - N-subjettiness more effective on gluon separation

- Once mass the cut is applied

Jet charge, Q^{κ}

$$Q^{\kappa} = \frac{\sum_{i} q_{i}(p_{Ti})^{\kappa}}{(\sum_{i} p_{Ti})^{\kappa}}$$

Used to discriminate between W+ and W-

Emanuele Usai BOOST13

Jet charge distribution

 $t\bar{t}$ sample for W⁺ and W⁻ jets in simulation and data. Simulated distributions are a sum of all processes.

W-Tagging [CMS-PAS-JME-13-006]

Polarization studies

- Polarization can affect substructure distribution
- ▶ Sample used: scalar $X \to W_{lept}^L W_{had}^L$ and $X \to W_{lept}^T W_{had}^T$

 parton level helicity angle for hadronic W observable helicity angle from subjets

Emanuele Usai BOOST13

W-Tagging [CMS-PAS-JME-13-006]

Polarization studies - τ_2/τ_1

- pruned jet mass acceptance different for W_L and W_T
- ΔR between partons smaller on average for W_L
- W_L more likely to be accepted by CA8 jet

▶ in W_T topology p_T of the subjets is more asymmetric, thus more QCD-like Emanuele Usai BOOST13

08/13/13

Events

Philip Harris BOOST

Pileup Jet Id Algorithm: Tracking

- 13 variables for the full discrimination
 - 4 Vertexing related variables (2 most impt shown): #vertices, dZ of leading track in jet +

5

08/13/13

Events

Philip Harris BOOST

Pileup Jet Id Algorithm:Cones

Additional shape variables : ΔR annuli

 $\Delta R < 0.1$

14

08/13/13

Philip Harris BOOST

Algorithm Construction Construct a Boosted decision tree real vs PU Jets

• Train in four separate regions of η

η < 2.5 tracking Shape variables	2.5 < η < 2.75 Weak tracking (<mark>tracking ends at 2.5</mark>) Shape variables
2.75 < η < 3.0 Shape variables	3.0 < η < 5.0 Forward HCAL Shape variables

Construct a Boosted decision tree (trained on Z+jets for each)

08/13/13

Philip Harris BOOST

Pileup Jet Id in Data Fraction of pileup grows with higher |η|

Single-variable ROCs and likelihood combination

Single variables discrimination power

Discrimination power slightly decreases after smearing

Quark/gluon discrimination: similarly to PU Jet-ID, combine discriminating variables in likelihood

Quark and gluon have different colour interaction:

+ multiplicity
+ width
more homogeneous
energy sharing

different η , p_{τ} ranges

Quark-Gluon Discrimination

08/13/13

Philip Harris BOOST

QG Performance + Usage

- QG discrimination used in VBF selection
 - Reduces the QCD/Pileup bkgs for forward jets
- QG discrimination used in Z boson tagging
- Reduction of 60% gluon for 80% quark eff

