

Mateusz Ploskon

ALICE Collaboration

Global event properties: mean p_T vs multiplicity

arXiv:1307.1094

Proton-proton and p-Pb follow the same trend up to Nch~15; however: this is 90% of pp x-section and 50% of p-Pb x-section (different biases)

pp and p-Pb – much stronger increase than in Pb-Pb

Global event properties: mean p_T vs multiplicity

- Proton-proton: PYTHIA strong increase with
 N_{ch} attributed to Color Reconnections
 between hadronizing strings a collective final
 state effect
- p-Pb:
 - Glauber MC (incoherent p-N's) using measured <p_T> in pp does not work
 - Coherent effects via strings from different pN?
 - EPOS includes collective effects.
- Pb-Pb: DPMJet gets trend right. EPOS has different shape for very peripheral collisions.

Pion/Kaon/Proton in pp and Pb-Pb

Λ/K^0 in Pb-Pb collisions

- Integrated ratio independent of centrality ($\Lambda/K_{s}^{0} \sim 0.25$)
- Intermediate p_T : Λ/K_s^0 ratio enhanced in central Pb-Pb
 - consistent with radial flow
- High- p_T : ratio consistent with vacuum-like fragmentation.

NB: Identified particles in p-Pb

Lambda/Kaon ratio vs. charged particle multiplicity density $~R=A({
m d}N_{
m ch}/{
m d}\eta)^{
m B}$

- Baryon to meson ratio:
 - similar trend of p/pion ratio in p-Pb as in Pb-Pb per $dN_{ch}/d\eta$
 - follows a power-law with a same exponent B(p_T) in two systems (although in p-Pb much smaller than in Pb-Pb case) - similar case for proton/pion ratio
 - Same trend in proton-proton collisions

- Mass ordering for multi-strange baryons
 - Described by hydrodynamical model(s)

- v_2/n_q scaling at the LHC less obvious (within ~20%)
- For $(m_T-m_0)/n_q > 1 \text{ GeV}/c v_2$ of p is lower than of π

Not shown: $v3(p_T)$ – mass ordering reproduced by hydro; pion-proton intersect – expected from coalescence

COLLECTIVE FLOW AND JET QUENCHING

v_2 at high- p_T and R_{AA}

Jet quenching and non-zero v_2 are closely related – signature of the physical properties of QGP:

- QGP is opaque to colored probes
- In-medium energy-loss depends on the path length

¹⁰ News from R_{AA} of identified particles

Challenge for theory – consistent description¹¹ of charm production and its v₂

 The simultaneous description of D meson R_{AA} and v₂ is a challenge to theoretical models

- The simultaneous description of heavy flavor decay electrons R_{AA} and v₂ is a challenge to theoretical models
- Not shown: J/ ψ : v₂ > 0 at LHC; R_{AA} LHC > R_{AA} RHIC for most central events

On the other hand: $R_{pPb} = 1$

ALICE: Phys.Lett. B 720 (2013) 52-62; Phys.Rev.Lett. 110 (2013) 082302 CMS: Eur.Phys.J. C72 (2012) 1945; Phys.Lett. B710 (2012) 256-277; Phys. Lett. B 715 (2012) 66-87; PAS HIN-13-004

The method: from the high-multiplicity yield subtract the jet yield in low-multiplicity events (no ridge)

Analysis in multiplicity classes defined by the total charge in VZERO detector (away from the central region)

Further investigations reveal:

- the full modulation is (1) di-jets and (2) the double-ridge structure – nothing more
- Same yield near and away side for all classes of p_T and multiplicity suggest a common underlying process
 fror

Remaining correlation described by finite amplitudes of Fourier terms

Similar observations in Pb-Pb are ascribed to collective effects!

Number of explanations put forward raging from hydrodynamic flow to CGC formalisms

15

Twin ridge structure in p-Pb¹⁶ with identified particles

Shown here: hadron-proton correlation (high-low mult. percentile subtracted)

Jet peak excluded: $\Delta \eta < 0.8$

v₂ coefficient in p-Pb

Mesons (pions and kaons) following the same trend (< 2.5 GeV/c) Intersection with protons ~2 GeV/c

Comparison of v_2 in Pb-Pb and p-Pb

High-multiplicity p-Pb collisions

10-20% Pb-Pb

Similar features in p-Pb and Pb-Pb: mass ordering at low-p_T - in Pb-Pb ascribed to hydrodynamics

Summary & outlook

- QGP is opaque to colored probes
- Collective flow measured for identified particles in Pb-Pb collisions; features consistent with hydronynamical nature of QGP (RHIC: even at lowest Vs_{NN})
- Measurements of v₂ and R_{AA} complementary observables discriminating input to theory
- Min. bias collisions of p-Pb confirm jet quenching in Pb-Pb is a final state effect
- However, finite v₂ is found in most violent p-Pb collisions and v₂ for identified particles resembles findings from Pb-Pb collisions
- Similar features for particle ratios vs. p_T are found in pp p-Pb and Pb-Pb collisions – another universal feature?
- Wealth of results interesting learning curve ahead!

EXTRA SLIDES

Thermal fits

