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Structure of MC Programs

H

1. Incoming hadron                          (gray bubbles)
➮ Parton distribution function
➮ Multi parton distribution functions

2. Hard part of the process              (yellow bubble)
➮ Matrix element calculation, cross sections 
at LO, NLO, NNLO level

3. Radiations                                       (red graphs)
➮ Parton shower calculation
➮ Partonic decay
➮ Matching to NLO, NNLO

4. Underlying event                            (blue graphs)
➮ Models based on multiple interaction
➮ Diffraction

5. Hardonization                             (green bubbles)
➮ Universal models 
➮ Hadronic decay
➮ ....

From theory point of view this event looks very complicated



Jet event in DIS process
The jet algorithm 
finds one fat jet

Electron

H1 jet event

These hadrons 
are part of the 
“beam jet” when 
the jet resolution 
is crude.

Jet structure at large resolution scale:



Jet event in DIS process
The jet algorithm find 
one fat jet

Electron

H1 jet event

These are still 
part of the 
beam jet.

Jet structure at small resolution scale:

Now, they are 
resolved as a jet.



Hadron-Hadron Collision
In hadron-hadron collision the picture is more complicated. 

Resolution scale: 400 GeV Decreasing the resolution scale 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

Important observation: The 
total cross section is independent 
of the resolution of the 
measurement (or detector).  

We have to also consider the evolution of the final state jets.

Does perturbative QCD 
support this nice intuitive 
picture?



Hadron-Hadron Collision
In hadron-hadron collision the picture is more complicated. 

Decreasing the resolution scale 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

Important observation: The 
total cross section is independent 
of the resolution of the 
measurement (or detector).  

Resolution scale: 100 GeV

We have to also consider the evolution of the final state jets.

Does perturbative QCD 
support this nice intuitive 
picture?



What do we want?

A general purpose parton shower program must generate partonic final states ready for 
hadronization
‣ in a FULLY exclusive way (momentum, flavor, spin and color are fully resolved)
‣ as precisely as possible (e.g.: sums up large logarithms at NLL level).
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What do we want?

A general purpose parton shower program must generate partonic final states ready for 
hadronization
‣ in a FULLY exclusive way (momentum, flavor, spin and color are fully resolved)
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density operator in color ⊗ spin space

The fully exclusive final state is described by the QCD density operator, that is the basic 
object in the Monte Carlos
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We try to approximate the QCD density operator with the universal factorization properties of 
the QCD amplitudes.



Factorization: Collinear limit
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Collinear limit:

The QCD matrix elements have universal factorization property when two external partons become 
collinear

➭ The collinear part of the splitting operator is simple in color.

➭ It introduces some spin correlation.



Factorization: Soft limit
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Soft limit:

The QCD matrix elements have universal factorization property when an external gluon becomes 
soft

➭ It is introduces very complicated color interferences.

➭ In spin space the soft contributions are diagonal and simple.



Factorization: Soft limit (1-loop)

m m
This is again a singular 
operator only in the color space.
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Soft limit at 1-loop level

The splitting operators can be 
obtained from these factorization 
rules.

There is another type of the unresolvable radiation, the virtual (loop graph) contributions. We have 
universal factorization properties for the loop graphs. E.g.: in the soft limit, when the loop momenta 
become soft we have



Resolved emissions

Approx. of the Density Operator
Real radiation

Here we impose strong ordering. Only the 
softer or more collinear radiation are allowed.
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Virtual radiation

Singular part Finite contribution

Some of the real emissions are not resolvable. Having a snapshot of the system at shower time t’

Unresolved emissions
This is a singular contribution
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Resolved emissions
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Approx. of the Density Operator
Combining the real and virtual contribution we have got

This operator dresses up the physical state with one real and virtual emissions those are softer or 
more collinear than the hard state.  Thus the emissions are ordered. 

[H(⌧)� V(⌧)] Classical shower splitting operator
This part is implemented in every parton shower those 
are available on maket (HERWIG, PYTHIA, SHERPA)

Coulomb gluon contribution
It is not implemented in any publicly available code. It 
shouldn’t be ignored, it can lead to factorization breaking.
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�
1
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“Finite” loop contribution
It is alway set to zero in order to maintain unitary. In some 
cases (e.g.: new physics searches) it shouldn’t be zero. 
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�i⇡Ṽ(⌧)

�
1
�� [H(t)� V(t)] = 0 Unitary condition

“Finite” loop contribution
It is alway set to zero in order to maintain unitary. In some 
cases (e.g.: new physics searches) it shouldn’t be zero. 

��⇢R1
�
+

��⇢V1
�
=

Z t0

t
d⌧

h
H(⌧)� V(⌧)� i⇡eV(⌧)+�V(⌧)

i ��⇢(t)
�

U(t0, t) shower evolution operator

Unitary parton shower is  
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Evolution Equation
We can write the evolution equation in an integral equation form

“Nothing happens”

“Something  happens”

where the non-splitting operator is 
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DGLAP Evolution of PDFs
Hard matrix elements

beam jet
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Perturbative part (what we calculate)
Completely independent of the PDFs 

PDFs: The non-perturbative  
physics is only here

Non-trivial PDF dependence

It MUST BE independent of the PDF, 
otherwise the perturbative and non-
perturbative physics are mixed.

Leads to the evolution equation of the 
parton distribution functions.
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DGLAP Evolution
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In general the incoming parton can be massive, this leads to a slightly modified DGLAP evolution. 
That is
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with the modified evolution kernels:

With different shower time the mass depend parts of the DGLAP kernels are different!



Shower PDFs
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Soft gluons
The imaginary part of the soft gluon insertion is called Coulomb gluon: 

m m
This is again a singular 
operator only in the color space.
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What can Coulomb gluon do? 
Well, the simple answer is trouble. In p-p collisions the Coulomb gluon breaks factorization. 
Without factorization theorem it would be very hard to do any phenomenology at the LHC. 
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z }| {
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PDF of the incoming hadrons

partonic cross section

neglected power 
suppressed terms

This formulae has been proven only for Drell-Yan total cross section, but one can say it is true for 
sufficiently inclusive observables. At the LHC we are interested in more exclusive measurements 
than the total cross sections. Every observable has a typical resolution scale Q0 and this scale 
dependence doesn’t factorize in the usual way.

If Q0 is small then it is not a good approximation anymore.     

Catani, de Florian, Rodrigo; Forshaw, Kyrieleis, Seymour; Forshaw, Seymour, Siodmok
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These large logs has to 
be summed up!



What else it can do?
Just more trouble. Because of Coulomb gluon we cannot do fixed order calculation for processes 
like:

- 2 → 2 at N4LO level or beyond (inclusive jet or Z+2jet)
- 2 → 3 at N3LO level or beyond (3-jet production)
- 2 → 4 at NNLO level or beyond (4-jet production)
- every process with at least one massive parton in the initial state at NNLO level 

In these processes the Coulomb gluon leads to un-cancelled soft singularities. (Note, in a general 
NNLO subtraction scheme this un-cancelled soft singularity should appear explicitly.)

Can parton shower 
deal with this problem?

- ≠ 0

The problem comes from this non commuting insertion of Coulomb gluon:



Coulomb gluon in Shower
The origin of Coulomb gluon is pure virtual, thus it doesn’t change the total cross section. This let us 
to define the PDF as before and it still has the standard DGLAP evolution.  
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Parton shower obeys the following equation:
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- It is important that Coulomb gluon disappear in leading 
color approximation.

- Nether angular ordered shower can deal with this 
problem.

- Color evolution and proper treatment of soft gluon are 
needed in the parton shower implementation. 



Still soft gluon...

What is this term?

- It is just another soft gluon contribution, but this part comes from the real eikonal 
contribution.

- It is labeled as finite contribution but it is supposed to sum up the threshold logarithms. 

- Threshold logs appear when some heavy colored objects are produced in the final state 
and the  incoming partons have just enough energy to produce them. In such a scenario 
the final state particles can radiate only soft gluons and these soft gluons need to be 
summed up.

- This term fixes the error what have we made by imposing unitarity condition. Unitary 
condition makes the shower implementation simple but it is not what pQCD tell us to do. 

- In processes with massless partons only it is safe to set it to zero.

- The effect of the threshold log are important in new physics searches.

- Implementation of this term is shower leads to weighted shower, but we have already 
gave up the concept of unweighted shower when we implemented color evolution.
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Conclusion
- It is clear that we need more precise tools for the next run of the LHC.

- The large QCD effects are always there.

- In MC we should go from “postdiction” to prediction. This requires more theory 
development on parton showers and fixed order calculation. 

- I think the fixed order (NNLO,...) and parton shower developments shouldn’t happen 
independently. To learn more about parton shower we need a general NNLO 
subtraction scheme for fixed order calculations.

- The soft gluon is big obstacle. It is hard to deal with it in analytic resummation as well 
as in parton shower, but leading order parton shower can provide a nice framework 
to sum up large logarithms at NLL level for more exclusive and sophisticated 
observables.   

- ... but we are making progress.


