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Qjets give different answers to 
a question that 

depends on clustering history 

ex: pruning
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Pruning
Start with the constituents of a given jet and rebuild the jet 

along C/A or kT
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At every step of clustering check whether 
the branch to be added is soft and wide 
angled.

- if yes discard the softer four-vector. 
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stability. Furthermore, in our procedure the dependence
on precisely which weights are assigned to the trees is re-
duced, such that we find we can use process independent
weights, allowing for model independent searches.

In the following we provide the details of an algorithm
which can be used to associate many trees to a single
jet. As an example, we apply it to a substructure anal-
ysis using the jet-pruning procedure. [? ? ] The idea
we have described – associating a weighted set of trees
to a jet – would not be feasible if one had to consider
every tree which could be formed from a given set of
four-momenta in a jet. Fortunately, the weighted distri-
butions for an observable which one would obtain from
considering every tree can be obtained, to a good approx-
imation, through a procedure analogous to Monte-Carlo
integration. Indeed, precisely because an infrared and
collinear safe jet observable must be insensitive to small
reshu⌥ings of the tree momenta, we find it is su⌃cient to
consider only a small fraction of the trees one could as-
sociate to a jet, since each of these could then be related
through a small reshu⌥ing to similar trees. Furthermore,
when the weight ⇥ assigned to a tree can be written as
a product of weights ⇥ij assigned to each 1 ⌅ 2 split-
ting, ⇥ =

⌃
splittings ⇥ij , one can perform this procedure

while sampling trees according to their weight, further
increasing the speed of the process.

The algorithm we propose, which assembles a each tree
via a series of 2 ⌅ 1 mergings, functions as follows:

1. At every stage of clustering, a set of weights ⇥ij for
all pairs ⌃ij⌥ of the four-vectors is computed, and
a probability ⇥ij = ⇥ij/N , where N =

⇧
�ij⇥ ⇥ij is

assigned to each pair.

2. A random number is generated and used to choose
a pair ⌃ij⌥ with probability ⇥ij . The chosen pair
is merged, and the procedure is repeated until all
particles all clustered.

This algorithm directly produces trees distributed ac-
cording to their weight ⇥. To produce a distribution of
the observable for each jet, this algorithm is simply re-
peated NTree number of times. Note that, as the tree is
assembled piecewise, any algorithm which modifies a tree
during its construction (e.g., jet pruning) can be trivially
adapted to work with this procedure.

One particularly interesting class of weights ⇥(�)
ij ,

parametrized by a continuous real number � we term
rigidity is given by

⇥(�)
ij ⇥ exp

⇤
��

(dij � dmin)

dmin

⌅
. (1)

Here, dij is the jet distance measure for the ⌃ij⌥ pair, dmin

is the minimum over all pairs at this stage in the cluster-
ing and we have chosen the normalization to be unity for
the minimum pair. Note that this reduces to a traditional

FIG. 1. Distribution of a boosted W -jet mass for a single
jet. The single peaks are the result of classical pruned C/A
or kT algorithms. The distributions result from NTree = 100
clusterings with rigidity � = 1.0 (left) or � = 0.1 (right).

clustering algorithm of the type defined by the distance
dij when � ⌅ ⇧. In this sense, it is helpful to think
of the traditional, single tree algorithm as the “classical”
approach, and � ⇤ 1/~ controlling the deviation from
the “classical” clustering behavior. With this analogy,
we label the current approach the Qjet(“quantum” jet)
algorithm and the corresponding pruning as Q-pruning.
Before proceeding, let us briefly note that there is some

arbitrariness in the exact form of dij and the value of the
rigidity parameters �. We find that for small enough
� (say, � . 0.1), the pruned jetmass distribution looks
quantitatively and qualitatively similar whether dij is
chosen to be the kT or C/A distance (see Fig. 1). This
implies that for a small enough rigidity parameter we
achieve some level of algorithm-independence.
We now demonstrate, as an illustrative example, how

the use of Qjets can have importantc e⇤ects in an analy-
sis employing jet pruning to study hadronically decaying
boosted W s. As described in Ref. [? ? ] pruning is
one of the jet grooming tools [? ? ? ] used to sharpen
signal and reduce background when considering the jets
of boosted heavy objects. It functions by modifying the
mergings in a given tree that involve both a large angu-
lar separation and asymmetric energy sharing. In detail,
if a clustering algorithm attempts to cluster two four-
momenta i and j which satisfy

zij ⇥
min

�
pTi , pTj

⇥

| ✓pTi + ✓pTj |
< zcut or

�Rij > Dcut ,

(2)

then the merging is vetoed and the softer of the two four-
momenta is discarded. By applying jet pruning to sets
of trees assembled for the same jet we will be able to
associate a distribution of masses to a single jet, and, as
we will see, improve our ability to distinguish signal and
background jets.
The exercise we perfrom is quite simple: having cre-

ated samples of simulated signal (W ) and background
jets, we classically prune every jet and record the classical
pruned mass, mcl. In the distribution of mcl, the W par-
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Pruned Jet

Pruning
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- Four-vectors that are pruned are actually branches of the 
tree.

- Pruned jets depend crucially on the tree-structure or the 
clustering algorithm used to construct the jet.

Pruning
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QJets Clustering
- As in a sequential recombination algorithm, assign every pair of four-vectors 

a distance measure dij.

- However, unlike a normal sequential algorithm (where the pair with the 
smallest measure is clustered), here a given pair is randomly selected for 
merging with probability

�ij =
1

N
exp

✓
��

dij
dmin

◆ rigidity parameter

Steve Ellis, Andrew Hornig, David Krohn, 
Matt Schwartz and TSR

arXiv:1201.1914
Phys.Rev.Lett. 108 (2012) 

dmin = Min ({dij})
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�ij =
1

N
exp

✓
��

dij
dmin

◆

↵ ! 1

↵ ! 0

� > 0

� < 0

Classical regime: only path corresponding to dmin is selected

physical regime: physical paths are preferred

democratic regime: all paths have same weight

unphysical regime: physical paths are de-weighted

dij :  we take C/A or kT measure

QJets Clustering
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just
Pruning

one 
pruned jet

Qjets + Pruning

 N pruned Qjets

one pruned 
jetmass N pruned  jetmasses

A collection 
of 4 vectors

QJets + Pruning
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QJets + Pruning
The original jet is made using anti-kT  algorithm with 

R = 0.7 and pT > 500GeV 

jetmass

classical pruned 
jetmass

QPruned jetmass
distribution

Ex. W decaying to two quarks
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QJets + Pruning 

How can this distribution be used? 

The original jet is made using anti-kT  algorithm with 
R = 0.7 and pT > 500GeV 

Ex. W decaying to two quarks

jetmass

classical pruned 
jetmass

QPruned jetmass
distribution
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QPruning vs. Pruning
Let us take a sample jet

How can this distribution be used? 

classical pruned 
jetmass

QPruned jetmass
distribution

Simply use the shape of 
the distribution 

to discriminate signal from 
background

Application in signal discovery

Application in determination of 
cross-section, mass etc.

Use the distribution 
to reduce statistical 

fluctuations in 
measurements
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Volatility of a jet

volatility of a jet ωp = width of jetmass distribution
mp = averaged pruned jetmassV =

�p

mp

Volatility
-210 -110 1
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Volatility
-210 -110 1
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-310

-210

-110  = 0.01α

W-Jets

QCD-Jets
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ATLAS NOTE
ATLAS-CONF-2013-087

August 11, 2013

Performance and Validation of Q-jets at the ATLAS Detector in pp
Collisions at

p
s = 8 TeV in 2012

The ATLAS Collaboration

Abstract

The Q-jets technique introduces the idea of interpreting jets through multiple sets of
possible showering histories. This approach allows jet observables, such as the jet mass,
to be evaluated not simply as single values, but rather as distributions. The resulting dis-
tributions can be interpreted statistically to form new observables, allowing the separation
of boosted, hadronically-decaying particles from light quark and gluon backgrounds. We
present a study of Q-jets in boosted, hadronically-decaying W boson and dijet samples,
demonstrating the discriminating power of this technique. Di↵erent Q-jet parameters and
observables are studied, and an optimal configuration based on physics performance and
computational e�ciency is proposed, leading to a factor of 15 in dijet rejection at a 50%
e�ciency for jets from boosted, hadronically decaying W bosons. The impact of pile-up
on the performance of this method is tested up to an average of 40 additional interactions
per event and found to be weak. A performance comparison between the Q-jets algorithm
and N-subjettiness, a previously measured substructure observable which determines the
compatibility of a jet with the N-subjet hypothesis, is presented.

c� Copyright 2013 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

Volatility of a jet: experimental results

Available on the CERN CDS information server CMS PAS JME-13-006

CMS Physics Analysis Summary

Contact: cms-pog-conveners-jetmet@cern.ch 2013/08/15

Identifying Hadronically Decaying W Bosons Merged into
a Single Jet

The CMS Collaboration

Abstract

In the new energy regime of the LHC, it is becoming increasingly important for new
physics searches to identify single jet objects which originate from and contain the
decay products of a hadronically decaying massive W boson produced with high
transverse momentum. A number of observables are explored for identifying these
”W-jets”. An algorithm is defined to identify jets originating from hadronically de-
caying W bosons for different signal scenarios. The efficiency for tagging W-jets is
presented and comparisons are made between data and simulation. All the tech-
niques discussed in identifying W-jets are applicable for other hadronic two-prong
decays such as those from Z and Higgs bosons.
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Summary:

- The volatility distribution for QCD jets and W-jets have been 

reproduced.

- The optimized separation is obtained for α=0.1 and NQjets  > 25

- Volatility distribution does not have strong dependence on Pile-up

- good data/MC agreement

- 15 QCD jet rejection at 50% W-jet tag efficiency

- Comparable performance with N-subjettiness 

- Volatility and N-subjettiness are weakly (ATLAS)/ strongly (CMS)  

correlated ! 

Volatility of a jet: experimental results
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Figure 3: The volatility distributions (log scale on y axis), for ↵ = 0.1 and 75 Q-jets per jet, of W-
jets compared to dijets for (a) truth-particle jets and for (b) jets reconstructed from locally calibrated
topological clusters.

5.2 Optimization vs. ↵

As noted in Section 1, the volatility variable is expected to depend on the rigidity, ↵. In particular,
as ↵ ! 1, the random element of Q-jets is lost, and the power of volatility decreases. Likewise, as
↵ ! 0, the weighting by the distance metric loses importance, and the selection of mergings becomes
completely random and a reduction of separation is again expected. Figure 4 shows the mean of the
volatility distribution as well as the significance of the volatility as a function of ↵. The significance is
defined as the ratio of the absolute di↵erence of the mean W-jet selection and dijet selection volatilities to
the sum in quadrature of the respective RMS values. It can be seen that the optimal separation occurs at
↵ = 0.1. A full comparison of signal e�ciency versus background rejection4 is presented in Section 5.6.

5.3 Optimization of Q-jet number

Apart from the rigidity ↵, another free parameter of the Q-jets algorithm is NQJets, which is the number of
Q-jets generated per jet to calculate the volatility. In principle, ⌫ is defined for NQJets ! 1, but in practice
it must be estimated from finite samples. As NQJets increases, the volatility is expected to become more
robust against statistical fluctuations and therefore a stronger discriminant. However, the computation
time grows significantly with increasing NQJets, which can lead to a heavy load on computing resources.
Figure 5 displays the mean volatility as a function of NQJets. It shows that the separation between W-jets
and dijets is fairly stable and suggests that analyses are able to use NQJets values a low as 25 � 50 to
observe similar performance to the results presented in this note, where NQJets = 75 is generally used.
Section 5.6 presents a full signal e�ciency versus background rejection optimization for this variable.

4The e�ciency is defined as the ratio of the number of kept to rejected W-jets whereas the rejection is defined as the ratio
of the number of rejected to kept light quark and gluon jets.
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Figure 4: Distributions of (a) the volatility for W-jets and dijets and (b) the significance of the volatility
as a function of the rigidity ↵. The optimal separation in mean and optimal significance is observed at
↵ = 0.1. The significance is defined as the ratio of the di↵erence between the mean dijet and mean W-jet
selection volatilities to the sum in quadrature of the respective RMS values.
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as a function of NQJets. The significance is defined as the ratio of the di↵erence between the mean dijet
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Volatility of a jet: experimental results

5.4 Performance versus pile-up

Volatility shows only a small dependence on the average number of interactions per bunch crossing,
up to 40, for both W-jets and dijets, as shown in Figures 6(a) and 6(b) respectively. As jet pruning is
designed partly to remove pileup from large R jets, volatility is likewise expected to have weak sensitivity
to pileup, as observed [9, 39].
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Figure 6: Volatility as a function of the average number of interactions per bunch crossing for (a) W-
jets and (b) dijets for jets reconstructed from topological clusters. The black points represent the mean
volatility as a function of hµi.

5.5 Data/MC agreement

The comparison of data to MC for the volatility variable is shown in Figure 7 for an ↵ value of 0.1. Fair
agreement is seen in all cases, although in the dijet sample it is generally better and stable over the full
range of volatility. In the W-jet sample, the Monte Carlo predicts higher values of volatility than seen
in data. The comparison of the pruned jet mass distribution in data and simulation in the W mass peak
region between 50 GeV and 110 GeV is shown in Figure 8.

Systematic uncertainties

The di↵erent sources of systematic uncertainties that are considered can be split into two main cate-
gories: those a↵ecting the overall normalization and those a↵ecting the shape of the distributions and
the acceptance. For the first category, a 5% uncertainty on the next-to-next-to-leading order in QCD and
next-to-next-to-leading logarithmic order tt̄ cross-section [23] is applied as well as a 2.8% uncertainty
on the integrated luminosity. The latter is derived, following the same methodology as that detailed in
Ref. [40], from a preliminary calibration of the luminosity scale derived from beam-separation scans
performed in November 2012. For the second category, the major sources of uncertainties considered
are related to the jet energy scale (JES), jet energy resolution (JER), jet mass scale (JMS) and b-tagging
e�ciency. The systematic uncertainties from these di↵erent sources are combined and shown in the
shaded band in Figures 7(a) and 8(a) together with the statistical uncertainty of the simulated samples.
Figures 7(b) and 8(b) show statistical uncertainties only.
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Summary:

- The volatility distribution for QCD jets and W-jets have been 

reproduced.

- The optimized separation is obtained for α=0.1 and NQjets  > 25

- Volatility distribution does not have strong dependence on Pile-up

- good data/MC agreement

- 15 QCD jet rejection at 50% W-jet tag efficiency

- Comparable performance with N-subjettiness 

- Volatility and N-subjettiness are weakly (ATLAS)/ strongly (CMS)  

correlated ! 

Volatility of a jet: experimental results
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Figure 7: Volatility for reconstructed calorimeter jets in data and in simulation for (a) a W-jet selection
and for (b) a dijet selection. W-jet selection plots show statistical and systematic uncertainties whereas
dijet selection plots show statistical uncertainties only.
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Summary:

- The volatility distribution for QCD jets and W-jets have been 

reproduced.

- The optimized separation is obtained for α=0.1 and NQjets  > 25

- Volatility distribution does not have strong dependence on Pile-up

- good data/MC agreement

- 15 QCD jet rejection at 50% W-jet tag efficiency

- Comparable performance with N-subjettiness 

- Volatility and N-subjettiness are weakly correlated -- suggests useful 

potential combination  

Volatility of a jet: experimental results

5.6 Signal e�ciency and background rejection

As enriched samples of W-jets and dijets are selected in both data and MC, the combined light quark
and gluon jet rejection as a function of W-jet e�ciency can be measured separately in both data and MC.
The W-jet e�ciency and dijet rejection (the inverse of the dijet e�ciency) are calculated by scanning cut
values of the volatility distributions in Figure 7. The results in Figure 9 show that a rejection factor of 15
for a mixed sample of light quark and gluon jets can be obtained at a 50% W-jet e�ciency working point,
and they also confirm that ↵ = 0.1 provides the optimal background rejection for a fixed signal e�ciency
as discussed in section 5.2. All samples are selected as described in sections 4.1 and 4.2. Figure 9(a)
shows the e�ciency in MC and includes the backgrounds discussed in Section 3 while Figure 9(b) shows
the e�ciency in data and confirms the rejection observed in MC.
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Figure 9: Signal e�ciency versus background rejection in (a) signal MC with all backgrounds and in (b)
data for several values of ↵.

In Figure 10, the signal e�ciency to background rejection is computed for several values of NQJets.
Values of NQJets > 25 show very similar results, suggesting that generation of as few as 25 Q-jets per jet
can provide near optimal performance as discussed in section 5.3.

5.7 Track jets performance

As a cross-check on the method, the studies are also performed using jets reconstructed from tracks in
the inner detector while event selections are still performed on the R = 0.4 calorimeter jets. As shown in
Figure 11(a), some discrimination between W-jets and dijets continues to exist for jets constructed from
tracks, but the separation is significantly reduced compared to the calorimeter variable. This is expected
due to the missing neutral content, which varies widely from jet to jet due to the fragmentation of an
individual jet, and consequently means that distributions for discriminating variables are generally less
well separated. Figure 11(b) shows the comparison of data and simulation as a function of volatility for
the W-jet selection.
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Summary:

- The volatility distribution for QCD jets and W-jets have been 

reproduced.

- The optimized separation is obtained for α=0.1 and NQjets  > 25

- Volatility distribution does not have strong dependence on Pile-up

- good data/MC agreement

- 15 QCD jet rejection at 50% W-jet tag efficiency

- Comparable performance with N-subjettiness 

- Volatility and N-subjettiness are weakly (ATLAS)/ strongly (CMS)  

correlated ! 

5.8 Q-jets versus N-subjettiness performance

To compare the volatility variable of the Q-jets algorithm to other substructure algorithms, the ⌧min
21 N-

subjettiness variable with one pass of the minimization algorithm on the kt axes has been chosen5 [41–
43]. Figure 12 shows that the performance of the two variables is comparable over a large range of
signal e�ciency and background rejection values. Figure 13 shows the correlations between the two
variables with correlation factors of 50% and 24% for jets from a hadronically-decaying W boson and
dijets respectively. In particular, for the dijet selection shown in Figure 13(b), the slope between the
two variables is reduced for large volatility values. This confirms previous observations [44] that a
combination of the two variables will give an improved performance.
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Figure 12: Signal e�ciency versus background rejection for the volatility and ⌧min
21 variables.

5Note that while the jet selections are performed using the pruned jet kinematics, N-subjettiness is calculated with the full
jet constituents, consistent with the approach that has delivered best experimental performance in previous e↵orts [41].
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The multivariate optimization is performed using the TMVA package [45]. The variables con-
sidered in the optimization are:

• Pruned mass drop mdrop
pr

• Q-jet volatility GQjet
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- The optimized separation is obtained for α=0.1 and NQjets  > 25
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Figure 13: Distributions of the ⌧min
21 (N-subjettiness) and volatility (Q-jets) variables for (a) a W-jet

selection and (b) a dijet selection. The black points represent the mean ⌧min
21 value as a function of

volatility.

6 Conclusions

The performance of the Q-jets reclustering algorithm and the resulting jet volatility distributions have
been explored and this technique has been confirmed to discriminate between W-jets and light quark and
gluon jets. Two free parameters of the algorithm have been studied and optimal values for the rigidity at
↵ = 0.1 and for the number of Q-jets per jet of NQJets > 25 have been determined. No strong pile-up
dependence is observed for the volatility variable, while the distribution for jets from a W boson decay
are slightly more sensitive to additional interactions than light quark and gluon jets. The performance
of the Q-jet algorithm in terms of discrimination power between W-jets and light quark and gluon jets
has been studied for jets reconstructed from topological calorimeter clusters and for jets reconstructed
from inner detector tracks; the discrimination of the latter is seen to be weaker. This degradation in
performance is partially due to the fact that neutral hadrons do not leave tracks in the inner detector.

From these studies, the application of a volatility requirement is shown to give a factor of 15 in
dijet rejection for 50% W-jet e�ciency for jets with 200 GeV < pT < 350 GeV. The separation is
validated in-situ by comparing distributions of samples enriched in W-jets and light quark and gluon
jets: very good agreement is observed in multijet events, and fairly good agreement is seen in W-jets.
The separation power of Q-jets is also tested directly in data using these samples, and the Monte Carlo
predictions are confirmed. Lastly, the signal e�ciency and background rejection of the volatility variable
has been shown to be similar to the ⌧min

21 N-subjettiness variable, while the former performs slightly better
in the high W-jet e�ciency region. The correlations between these two variables have been studied and
interesting regions of decorrelaton are observed, particularly for the dijet selection. This suggests that a
combination of the two variables could lead to an improved performance.

The strong performance of using volatility as a discriminating variable has motivated the investi-
gation of its use in hadronically-decaying boosted object searches such as diboson and tt̄ resonances.
Further future plans include the use of Q-jet distributions as event weights, which has been shown in
theoretical studies to improve the statistical significance of searches [2, 45].
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QPruning vs. Pruning
Let us take a sample jet

How can this distribution be used? 

classical pruned 
jetmass

QPruned jetmass
distribution

Simply use the shape of 
the distribution 

to discriminate signal from 
background

Application in signal discovery

Application in determination of 
cross-section, mass etc.

Use the distribution 
to reduce statistical 

fluctuations in 
measurements
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QPruning vs. Pruning

Consider candidates for a W jet

classical pruned 
jetmass QPruned jetmass

distribution

70 GeV 90 GeV

Mass window 
for W

pruned mass is
either in or out of the bin 

tagging efficiency is either 0 or 1

tagging efficiency is a number 
between  0 to 1
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QPruning vs. Pruning

Consider candidates for a W jet
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Statistical aspects of QJets
Consider a master set of jets

Ιn an experiment
• pick N jets at random out of the master set
• Qjet+prune every jet and determine

1. tagging efficiency ( τj )
2. An observable averaged over all qjets ( qj )

ex. average mass of the distribution ( μj )

Experimental Observables:

we want to determine δNexpt  and δQexpt

N
expt

=
X

j

⌧j Q
expt

=

P
j ⌧jqjP
j ⌧j
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Statistical aspects of QJets
we want to determine δNexpt  and δQexpt

Standard Procedure:
• repeat the experiment many times and calculate δNexpt  and δQexpt

Ιn an experiment
• pick N jets at random out of the master set
• Qjet+prune every jet and determine

1. tagging efficiency ( τj )
2. An observable averaged over all qjets ( qj )

ex. average mass of the distribution ( μj )

one can derive δNexpt  and δQexpt  analytically 
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Statistical aspects of QJets
one can derive δNexpt  and δQexpt  analytically 
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Statistical aspects of QJets

s

h⌧i+ var(⌧)

h⌧i  1 for all distributions

= 1 for binomial distributions (i.e. for pruning)

one can derive δNexpt  and δQexpt  analytically 
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Figure 2: The numerical estimations of the uncertainties associated the number of jets tagged in an
experiment and the measurement of the tagged jetmass as functions of their analytical estimations.
Along the solid (blue) line the numerical evaluations agree completely with analytical evaluation from
Eq.(3.19) (left panel) and Eq.(3.20) (right panel). The red (dark green) points show the cases when
the numerical analysis is done using QCD (W ) jets using various rigidity parameters and N = 100.
In the right plot, we use average mass-in-the-window for each jet (µb) to measure tagged jetmass of
W jets in the experiment m
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.

As a result, in the classical limit the moments of the master set reduce to (the binomial forms)
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Correspondingly the expressions in Eqs. (3.12-3.13) reduce to
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The whole reason Qjets are useful is because they allow the quantities in Eq. (3.12) to be smaller
than the classical values in Eq. (3.17).

3.5 Numerical support

In this subsection we provide the results of our numerical studies in order to verify the formulae derived
earlier in this section. We select two master sets of jets. The first set consists of leading jets selected
from QCD dijet events and provides a sample of QCD jets. The second set contains the leading jets
from hadronic WW events.

We generated both these sets of events using Pythia 8. We use ISR, FSR and MI as implemented
in Pythia 8 to simulate a busy hadronic environment. We granularize the output from Pythia in cells
of size 0.1 ⇥ 0.1 in �⌘ ⇥ ��. The pT of each cell is reweighed so as to make it massless. All cells
with energy greater than 0.5 GeV and within |⌘|  5 are clustered into jets. In particular, we use
Fastjet 2.x.x to find anti-kT jets with R = 0.7 and pT > 500 GeV. The leading jet from each event is
selected as an element of the master set of jets.
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Figure 3: We plot the uncertainty associated with mass measurements as a function of N , the
expected number of jets in the experiment. The red, dark green and blue points show the numerical
estimates for classical pruning, ↵ = 1.0 and ↵ = 10�3. The solid lines show the leading order analytical
estimates using Eq.(3.20). Note that the di↵erences between the numerical and the analytical estimates
(i.e. O �
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�
corrections) disappear for large N .

In order to find the expected values and the uncertainties of various measurements in an experi-
ment, we construct 10000 pseudo-experiments. In each pseudo-experiment, r jets are chosen at random
from the master sets, where r follows a Poisson distribution with mean N . We define the mass window
to be (70 GeV � 90 GeV). In each pseudo-experiment, we measure the number of tagged jets t and the
average tagged jetmass m as described in Eq. (3.5). The averages and variances of the measurements
are calculated by comparing the numbers from each pseudo-experiments.

The first comparison involves verifying Eq. (3.12). Note that the expressions in Eq. (3.12) and
Eq. (3.10) can be rearranged in a more suitable form for the purpose of comparison:
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Note from Eq. (3.17) that this ratio goes to unity in the classical limit.

We numerically determine
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from the pseudo-experiments for N = 100, and we repeat it
for di↵erent values of the rigidity parameter.

Fig. 2a is a plot of numerically determined values of
Var(t

exp

)

0

ht
exp

i
0

vs. their values determined from
Eq. (3.19). We find agreement between the numerical and analytical estimations. Note in particular
that the size of the variance has decreased below the classical value - as we expect, this is an indication
that weighted events allow for a more precise measurement of the tagging e�ciency and cross section.

In the next exercise, we provide numerical evidence to validate our analytical understandings of
the uncertainties associated with the mass measurement. In the same spirit as in Eq. (3.19), we
combine Eqs. (3.11, 3.13) for a more suitable measurement:
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In Fig. 2b we plot the numerically estimated values of the mass uncertainties as a function of their
estimated values from Eq. (3.20) for N = 100 and for di↵erent values of ↵. Again we see agreement
with our analytical results.

Note that we have neglected O �
1

N2

�
corrections in Eq. (3.20). In the next figure we show the

sizes of these corrections as a function of N . We have plotted numerical vs. analytical estimation
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Statistical aspects of QJets

For numerical example, we use 

q = μ = average jetmass in the 
bin

just pruning

α = 1

α = 0.01

one can derive δNexpt  and δQexpt  analytically 
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Conclusion
Grooming tools (pruning, trimming, filtering) even though designed for 
boosted search, are useful and essential for non-boosted cases.

We introduced QJets: a non-deterministic jet clustering algorithm.

- QJets Clustering lets us look inside a jet in a new way. 
- QJets + pruning renders stability to jet observables and provides new discriminants 

for the discovery of signal jets.  

Conclusions Closing Thoughts

Summary

• Q-jets are a new way to interpret jets: focus on multiple possible
clustering histories, motivated by non-invertibility of parton shower

• The first time such an idea is being considered!

• ATLAS has measured Q-Jets in data and reconstructed MC
• Can obtain a factor of 15 QCD-rejection for 50% W-jet e�ciency in

the 200 GeV < pT < 350 GeV regime– very competitive with
existing techniques, with a possibility for combinations to further
improve performance

• Compatible with results/expectations from theorists
• See good data/MC agreement
• Volatility shows only slight dependence on pileup

• Just the tip of the iceberg: volatility is the first application of Q-jets
at ATLAS– looking forward to seeing more!
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