The Potential Importance of Low Luminosity and High Energy at the LHC

The "nightmare scenario" seems to be emerging at the LHC. A resonance that looks a lot like a Standard Model Higgs boson, BUT - no other new physics is seen !!

- Theoretical inconsistency => there must be more but (from current LHC results) there is no indication what to look for ??
- QUD* is a massless, weak coupling, IR fixed-point, SU(5) field theory that has
 {I have argued} a massive bound-state S-Matrix, generated by infra-red chirality
 transition anomalies, that uniquely contains the unitary Critical Pomeron.

Unbelievably {almost!}, QUD might also underly & unify the full Standard Model.

* Quantum Uno/Unification/Unique/Unitary/Underlying Dynamics

If the QUD S-Matrix is the origin* of the Standard Model then, in addition to small neutrino masses, the only "new physics" is

• an EW scale strongly interacting sextet quark sector of QCD that provides EW symmetry breaking & dark matter, but is hard to isolate at large p_{\perp} .

This is conceptually radical & much development is still needed to develop a predictive, calculational, framework. Nevertheless, the implications are overwhelming, & suggestive evidence already exists.

Low luminosity runs at higher LHC energy could play a crucial role !!

* Could the Standard Model be reproducing the "Unique Unitary S-Matrix"?

THE CRITICAL POMERON

Uniquely, the Reggeon Field Theory CRITICAL POMERON has been shown to satisfy full multiparticle t-channel unitarity & all high-energy s-channel unitarity constraints.

Supercritical RFT Connnects Uniquely to Superconducting QCD ---

Critical
$$\mathbb{P} \longleftrightarrow \max \mathsf{N}_f \equiv \mathsf{16} \ \mathsf{triplet} \ \mathsf{quarks} \ \{\mathsf{unrealistic} \ !! \}$$

$$\equiv \ \mathsf{QCD}_S = \ \mathsf{QCD}_{n_q=6} + \{\mathsf{sextet} \ \mathsf{doublet} \}$$

- physically realistic if π_6 's produce EW symmetry breaking!!!

FORMULATION OF QUD

Appropriate QCD 6's + EW interaction embed uniquely {asym free & no anomaly} in

 $extbf{QUD} \equiv extstyle extstyle SU(5)$ gauge theory with l-handed $extstyle 5 \oplus 15 \oplus 40 \oplus 45^*$ massless fermions.

Under $SU(3) \otimes SU(2) \otimes U(1)$

$$5 = (3,1,-\frac{1}{3})) + (1,2,\frac{1}{2}) \; , \quad 15 = (1,3,1) + (3,2,\frac{1}{6}) + (6,1,-\frac{2}{3}) \; , \\ 40 = (1,2,-\frac{3}{2}) + (3,2,\frac{1}{6}) + (3^*,1,-\frac{2}{3}) + (3^*,3,-\frac{2}{3}) + (6^*,2,\frac{1}{6}) + (8,1,1) \; , \\ 45^* = (1,2,-\frac{1}{2}) + (3^*,1,\frac{1}{3}) + (3^*,3,\frac{1}{3}) + (3,1,-\frac{4}{3}) + (3,2,\frac{7}{6})) + (6,1,\frac{1}{3}) + (8,2,-\frac{1}{2})$$

Astonishingly !!! - there are 3 "generations" of both leptons & triplet quarks, & QUD is vector-like wrt SU(3)xU(1)_{em}. SU(2)xU(1) is not quite right, but if the anomaly-dominated S-Matrix can be constructed via multi-regge theory {as I have outlined},

all elementary fermions are confined

& SM interactions and states emerge as follows !!!

QUD MULTI-REGGE THEORY

In multi-regge limits, bound-states & interactions can be studied using $k \perp$ reggeon diagrams (∞ sums of feynman diagrams) containing gauge boson & fermion reggeons. Removing masses & a cut-off $k_{\perp}^{\lambda} \rightarrow$ anomaly vertices & an overall divergence* \rightarrow "wee parton vacuum" universal anomalous wee gauge bosons $\left\{SU(5) \text{ adjoint } C \neq \tau\right\}$

General Form of Divergent Reggeon Diagrams

 $^{^*}$ after elaborate cancelations of reggeization IR divergences.

INTERACTIONS

The surviving interactions couple via anomalies & preserve the vector SU(3)xU(1) symmetry. They are

- 1. Even Signature {Critical} Pomeron \approx SU(3) gluon reggeon + wee gauge bosons (anomalies \rightarrow triple pomeron vertex). NO BFKL \mathbb{P} , & NO odderon
- 2. Odd Signature Photon $\approx U(1)_{em}$ gauge boson + wee gauge bosons.
- Electroweak Interaction ≈ left-handed gauge boson, mixed with sextet pion (via anomalies), + wee gauge bosons.

Anomaly color factors, in wee gauge boson infinite sums, enhance couplings - hopefully to SM values $\{\alpha_{QCD}>>\alpha_{QUD}\sim \frac{1}{120}\}$

ANOMALY POLE BOUND STATES

Bound-states involve anomaly poles due to chirality transitions, e.g. Goldstone π 's in QCD

Within QCD, confinement & chiral symmetry breaking coexist with a "parton model"

- Bound-states are triplet or sextet quark mesons & baryons. {the proton & neuson (≡ sextet neutron → dark matter) are stable}. NO hybrids, NO glueballs.
- Sextet color factors >> triplet ⇒ sextet masses (← EW scale) >> triplets.
- Wee gluon color factors \to large $\mathbb P$ couplings to sextet states \to large high-energy x-sections & couplings to high-multiplicity hadron states $\{ \leftrightarrow Im \mathbb P \}$.

Within QUD, octet quark UV anomaly poles o SM generations. Lepton bound states contain three elementary leptons o

•
$$(e^-, \nu) \leftrightarrow (1, 2, -\frac{1}{2}) \times \{(1, 2, -\frac{1}{2})(1, 2, \frac{1}{2})\}_{AP} \times \{(8, 1, 1)(8, 2, -\frac{1}{2})\}_{UV}$$

$$\bullet \ \left(\mu^-,\nu\right) \ \leftrightarrow (1,2,\frac{1}{2})\times \{(1,2,-\frac{1}{2})(1,2,-\frac{1}{2})\}_{AP}\times \{(8,1,1)(8,2,-\frac{1}{2})\}_{UV}$$

$$\bullet \ \left(\tau^-,\nu\right) \ \leftrightarrow (1,2,-\frac{3}{2})\times \{(1,2,\frac{1}{2})(1,2,\frac{1}{2})\}_{AP}\times \{(8,1,1)(8,2,-\frac{1}{2})\}_{UV}$$

Anomaly interactions \implies all leptons have mass. *Anomaly color factors*

$$\rightarrow M_{hadrons} >> M_{leptons} >> M_{\nu's} \sim \alpha_{QUD}$$

e pprox elementary, $\,\mu \sim e\,$ but more massive !!

"TOP & HIGGS" PHYSICS

The primary decay of the sextet η is (cf. $\eta \rightarrow \pi^+ \pi^- \pi^0$)

$$\eta_6 \rightarrow W^+W^-Z^0 \rightarrow W^+W^-b\bar{b}$$

 \longleftrightarrow dominant SM $t\bar{t}$ decay mode \Longrightarrow

- ullet The $\eta_{oldsymbol{6}}$ resonance produces SM " $tar{t}$ events"
- experimentally hard to distinguish from SM top physics.
- sextet quark mass scale not "bizarre" large triplet quark mass!!

Two QUD triplet quark generations → SM hadrons. The third is

$$(3, -\frac{1}{3}) \equiv [3, 1, -\frac{1}{3}] \in 5, \quad (3, \frac{2}{3}) \in [3, 2, \frac{7}{6}] \in 45^*$$

The physical b quark is a mixture of the three QUD generations.

- Two "exotic" triplet quarks with charges -4/3 & 5/3 have no chiral symmetry ↔ no light (anomaly pole) bound-states.
- The I-handed "top quark" (t_{QL}) forms an EW doublet with an exotic quark \implies low mass t_{QL} states will be destabilized.

 $\eta_t pprox t_{QR} \bar{t}_{QL}$ remains as a "constituent t_Q state". Mixing with the sextet $\eta \to t$ wo mixed-parity scalars - the η_6 with EW scale mass & the η_3 with mass between triplet & sextet scales \sim 125 GeV ??? {"QUD Higgs" \equiv "top/anti-top" resonance}

Regge behavior requires cancelations \equiv Tree-unitarity $\Longrightarrow \{\textit{hopefully}\}\$ combined $\hat{\eta}_3$ & $\hat{\eta}_6$ couplings are comparable to SM Higgs couplings.

AT THE LHC ??

The η_6 in the Z-pair x-section, at the "tar t" threshold, is direct evidence for QUD.

Currently, more visible in the lower luminosity 7 GeV data - suggesting ultra-high

luminosity is missing QUD x-sections ??

Large \mathbb{P} couplings to π_6 's $\{\equiv longitudinal\ W's/Z's\} \implies$ large rapidity-gap x-sections for multiple W's/Z's (WW, ZZ, WWZ, ZZZ, ...) above the EW scale

- including a large double- $\mathbb P$ x-section for $Z^0\&W^\pm$ pairs could some events be identified, partially or fully, via jets ??
- ullet correlated, much larger, x-sections for multiple W's/Z's, over a wide range of rapidities, with high associated hadron multiplicity $(\leftrightarrow Im \mathbb{P})$

At higher energies, multiple sextet baryons - "neuson" {dark matter} & "prosons" - similarly produced.

Growing x-sections, coupling ${\mathbb P}$ & EW physics, should be looked for at the highest LHC energy. But,

LOW LUMINOSITY IS ESSENTIAL !!!

Some "interpreted" existing evidence?

- "Heavy Ion" UHE cosmic rays are dark matter neusons.
- 2. The cosmic ray spectrum knee is due to arriving/produced neuson thresholds.
- 3. Enhancement of high multiplicities & small p_{\perp} at the LHC reflects a sextet generated triple pomeron coupling.
- 4. "Top quark events" are due to the η_6 resonance interference with the background produces the Tevatron asymmetry.
- 5. Z pairs produce a high mass excess cross-section, with the η_6 appearing at the " $t\bar{t}$ threshold" most visibly in the CMS lower luminosity 7 GeV data.
- 6. The 125 GeV Higgs is the QUD $\{t_R \bar{t}_L + \eta_6\}$ resonance.
- 7. The AMS e^+/e^- ratio reflects EW scale CR production of W's & Z's (+ neuson/antineuson annihilation?)
- 8. Low luminosity Tevatron/LHC events with a Z pair + high multiplicity of small p_{\perp} particles, \neq SM, = QUD. $\{next\}$
- 9. TOTEM+CMS missing momentum $\leftrightarrow ZZ \to \nu$'s {coming up}

LOW LUMINOSITY EVENTS

Suggestive events were seen with initial low luminosity at both the Tevatron & the LHC. Also, very interesting events were seen in the recent TOTEM-CMS low luminosity run. The CDF Z^0Z^0 event below was recorded in 2004 - before pile-up!!! First counted, then rejected - one electron insufficiently isolated, then counted.

$Z^0 Z^0$ production region

- ullet $E_T > 500$ MeV leaves only a few extra particles.
- \bullet $E_T > 100$ MeV , many more (> 70) fill the rapidity axis away from the very forward Z^0Z^0 production region {almost out of the detector!}, as expected for QUD events!!
- Low luminosity
 ← 4e event very rare in the SM the very high hadron multiplicity was discovered serendipitously.
- Pile-up made looking for similar events impossible. Was this event part of a (QUD predicted) very forward x-section that was almost entirely missed?

The first CMS Z^0Z^0 event (4 $\mu's$), shown below, was recorded when the accumulated luminosity was \sim 2-3 pb $^{-1}$. From \sim 25 fb $^{-1}$, we might naively expect \sim 10,000 Z^0Z^0 events, yet only \sim 400 have been seen!!

- A remarkably clean event, $p_{\perp} > 1$ GeV \rightarrow only two particles.
- No cut-off → twenty with momenta in one of the two forward directions.
- \bullet < $n > \& < p_{\perp} >$ are close to minimum bias.
- ullet Both Z^0 's are very central & p_\perp (ZZ) is unusually low \sim 3 GeV

This does not look like a hard scattering event! Could it also have been part of a QUD x-section, containing Z^0 pair events distributed over a wide range of rapidities, that were largely unseen because of the pile-up due to the luminosity build-up?

CMS 4e event - with pile-up.

The line of scattering vertices is clear. Not only is it obviously impossible to determine any properties of associated soft hadrons produced with the Z^0 pair, also more forward-going leptons & photons will surely be very difficult to isolate!

CMS-TOTEM

In a special run, M_{TOT} predicted by protons detected via Roman pots was compared with M_{CMS} measured in the central detector. In general

$$M_{CMS} << M_{TOTEM} \\ \leftrightarrow \text{ tracks are seen in T2}.$$

But, in several events no tracks were seen & in a few

$$egin{array}{ll} \Delta M \geq \ 400 \ GeV \ & ext{e.g.} \end{array}$$

$$Z^0Z^0\longrightarrow 4\nu$$
's

large rapidity QUD ???

CMS: $|\eta| < 5.5$, T1: $3.1 < |\eta| < 4.7$,

T2: $5.3 < |\eta| < 6.5$,

FSC: $6 < |\eta| < 8$

ONE EVENT

- Significant mass discrepancy:
 - − RP predicted mass M($\xi_1\xi_2$) ≈ 900 GeV
 - CMS visible mass M(CMS) ≈ 500 GeV
- More forward η than T2 forbidden
 - $-\xi_1$ and ξ_2 forbid $\eta > 6.7$ and 6.9 respectively
- · Gap definition tolerances applied
 - resolutions, secondaries, pseudorapidity ↔ rapidity conversion ...
- No tracks observed in T2
 - But tracks are allowed (required) in ~T2 on both sides

~400 GeV missing mass?

THE LOW LUMINOSITY FUTURE?

QUD x-sections may increase with energy, but increased high luminosity could still hide signals. Low luminosity runs will be short & focus on small p_{\perp} physics.

- But CMS-TOTEM is working well with beautiful double- \mathbb{P} multi-jet event displays & "missing mass" events recorded. $\{c.f.\ ATLAS-ALFA\ ??\}$
- If some x-section has been missed at high luminosity, $Z^0\&W^\pm$ pairs could be seen in the CMS detector.
- The unprecedented wide rapidity coverage of rapidity gaps & hadron multiplicities suggests direct evidence for a link between \mathbb{P} & EW physics could be seen!!

If the "nightmare scenario" persists after extensive high luminosity running, & significant evidence of new phenomena is seen in brief low luminosity runs, could there be, eventually, a transition to full-time low luminosity - with modified detectors???

SOME QUD VIRTUES

- QUD is self-contained & is either entirely right, or simply wrong!
- The scientific and aesthetic importance of an underlying massless field theory for the Standard Model can not be exaggerated.
- If substantial evidence of an EW scale strong interaction appears, supporting the existence of QUD, it will have a {perhaps needed?} radical effect on the field.

Assuming the QUD S-Matrix can be derived as I have outlined, then -

- 1. The only new physics is a high mass sector of the strong interaction that gives EW symmetry breaking & dark matter
- 2. Parity properties of the strong, electromagnetic, and weak interactions are naturally explained.
- 3. The massless photon partners the "massless" Critical Pomeron.
- Anomaly vertices mix the reggeon states. Color factors could produce the wide range of SM scales and masses, with small Majorana neutrino masses due to the very small QUD coupling.
- 5. Despite the underlying SU(5) symmetry, there is no proton decay.
- 6. Particles and fields are truly distinct. Physical hadrons and leptons have equal status. Symmetries and masses are S-Matrix properties. There are no off-shell amplitudes and there is no Higgs field.
- 7. As a massless, asymptotically free, fixed-point theory, QUD induces Einstein gravity with zero cosmological constant.