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Introduction 
At LHC, √s >> electroweak scale 
Massive particles like top, W, Z and Higgs 
are often produced with significant boost 

E.g. at √s = 7 TeV, there are 
1000 ttbar/fb-1 with pT

t > 300 GeV 
Decay products are Lorentz-boosted in the 
same direction 

Separation ΔR ≈ 2m/pT 
Hadronic decays cannot be reconstructed 
using separate jets, since these begin to 
merge 
⇒use substructure techniques to look inside 
the merged jet and reconstruct the object 
of interest 
Important to explore this kinematic regime 

Extend understanding of the Standard Model 
Search for new physics 
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ATLAS Detector 
ATLAS is well suited to reconstructing boosted heavy particles 
using jet substructure techniques 
 

Excellent tracking 
Highly granular, hermetic calorimeter covering |η|< 4.9 

Good jet energy resolution: σ/E  ≈ 50%/√E + 3% (|η|< 3.2) 
Good longitudinal containment: 9.7 interaction lengths 
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ATLAS Calorimeter 
High granularity 

Electromagnetic calorimeter 
(EMCAL): 
Δη×Δφ = 0.025×0.025 
Hadronic calorimeter (HCAL): 
Δη×Δφ = 0.1×0.1 

Segmentation in depth to 
track shower development 

3 layers for EMCAL and HCAL 
Improves energy resolution 
 

Energy of hadrons is 
reconstructed by forming 3D 
topological clusters of energy 
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Jet Reconstruction 
Topological energy clusters are combined into jets, 
using the generalized distance measure: 
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G. Salam 
arXiv:0906.1833v2 [hep-ph]  

The definition of p leads to the 
three algorithms that are 
commonly used in ATLAS 

p = 1: kT  
p = 0: Cambridge-Aachen 
p =-1: anti-kT 

Large R parameters of ~1 are 
used to reconstruct heavy 
boosted objects 



Jet Substructure 
Jets containing the decay products of a massive 
particle will be distinct from those typically 
caused by a light parton 

Significant jet mass 
Hard 2- or 3-body substructure 

These differences may be obscured by  
QCD radiation 
Pile-up and Underlying event 
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Many techniques exist to “tag” and 
“groom” jets 

identify and retain hard substructure 
reduce impact of soft QCD radiation 

light parton jet 

top jet 
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ATLAS Experimental Programme 

Measure the jets and their substructure 
observables 

Required extensive work to calibrate observables 
and to estimate uncertainties 
Validation of Monte Carlo simulation 

Test tagging and grooming techniques in data 
Effective with finite resolution, pile-up etc.? 
Understand their relative performance and 
correlations 

Use as tools for physics measurements 
Standard Model measurements 
Searches for new physics 
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Jet Mass 
Jet mass calibration validated using 

Comparison to track-jets reconstructed in inner detector 
Hadronic W bosons selected from semi-leptonic ttbar events 

Mass scale uncertainties  
< 3% in 2011 for hadronic W bosons (pT > 200 GeV) 
< 5% in 2012 for hadronic top-jet (pT > 500 GeV) 

Precision physics possible with large-R jets! 
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arXiv:1306.4945 and 
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApproved2013Jms  

Data-MC Comparison of W peak position 
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Pile-Up 

High instantaneous luminosity causes many interactions per 
bunch crossing 
These pile-up interactions produce many low pT particles 
leading to a substantial background energy density, ρ 
Large-R jets have a large “catchment” area 
⇒suffer from large modifications of kinematics and 
substructure observables 
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ATLAS-CONF-2013-085 
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Mitigating the Effects of Pile-Up: Grooming 

Grooming reduces the effective jet area, rejecting soft 
energy deposits 
This helps to uncover any hard substructure in the jet 
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Another Approach: Pile-Up Subtraction 

Many fake particles – “ghosts” – with very low 
momenta, gT, are clustered into each jet 

These mimic soft pile-up particles 
Individual ghost area is Ag 

Sensitivity to pile-up of a given substructure 
variable, V(ρ, gT) is estimated by varying the 
energy of these ghosts by infinitesimal amount, δ 

 V(ρ, gT +δ.Ag) = V(ρ+δ, gT) 
Correction is then 

Vcorr = V(ρ=0, gT=0) = V(ρ=ρ0, gT = -ρ0.Ag) 
Vcorr is evaluated using a Taylor expansion 
This method can be used for many jet shapes and 
substructure observables 
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ATLAS-CONF-2013-085, based on arXiv:1211.2811  



Pile-Up Subtraction for Substructure 

Pile-up subtraction effectively removes pile-up 
effects from substructure observables 

√d12 = the kT distance between the two final clusters in jet 
12 16th September 2013 David Wardrope 

ATLAS-CONF-2013-085 
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Boosted Top 
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mtt = 2.6 TeV 

ATLAS-CONF-2013-052 



Introduction to ttbar Resonance Searches 
Many models of new physics predict heavy resonances with large 
couplings to top quarks 

These heavy resonances will decay to boosted tops 
ATLAS has searched for two benchmark models 

Z’: predicted by some leptophobic topcolour models 
 colour singlet 
 narrow resonance: Γ/m = 1.2% 

gkk boson: predicted by Randall-Sundrum models 
 colour octet 
 broad resonance: Γ/m = 15.3% 

ATLAS have tested several algorithms to identify boosted tops 
HEPTopTagger, Top Template Tagger 
Substructure variable cuts: kT splitting scales, n-subjettiness, mass 

Searches performed in fully- and semi-leptonic channels 
Fully-hadronic with ∫Ldt = 4.7 fb-1  (√s = 7 TeV) 
Semi-leptonic with ∫Ldt = 14.3 fb-1 (√s = 8 TeV) and ∫Ldt = 4.7 fb-1 (√s = 7 TeV) 
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JHEP01(2013)116, arXiv:1305.2756, ATLAS-CONF-2013-052, ATLAS-CONF-2013-084 
 
 



kT Splitting Scale and N-Subjettiness 

N-subjettiness , τN, evaluates how well the jet can 
be described as containing ≤ N subjets 

Ratios τNM= τN/τM  give additional rejection power vs 
light parton jets 
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Comparison of Tagging Techniques 

Broad spectrum of potential working points 
Optimum choice is analysis dependent 
HTT, √d12 and top template tagger have been used so far 
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Search in Semi-Leptonic Channel 
Dataset: ∫Ldt = 14.3 fb-1 at √s = 8 
TeV 
≥1 b-tagged R = 0.4 jet 
Selection for Leptonic top decay 

W candidate: lepton + MET 
R=0.4 jet, ΔR(jet,lepton) < 1.5 

Selection for hadronic top 
decay 

Trimmed R=1.0 jet, pT > 300 GeV, 
m > 100 GeV 
√d12 > 40 GeV 

ΔΦ(lepton, had. top) > 2.3 
To extend searches to lower 
resonance masses, a 
complementary resolved jet is 
used 
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Search in Semi-Leptonic Channel 
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No significant excess was seen, so 95% C.L. limits are set 
0.5 – 1.8 TeV for narrow, Z’-like resonances 
0.5 – 2.0 TeV for broad, gKK-like resonances 

Semi-leptonic search with ∫Ldt = 4.7 fb-1 at √s = 7 TeV (arXiv:
1305.2756) set similar limits 
A complementary search for fully hadronic ttbar resonances 
(JHEP01(2013)116) saw no excess either 
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Conclusions 

High LHC collision energy means heavy particles are 
often highly boosted 

Within the Standard Model and in new physics models 

Specialized substructure techniques can be used to 
reconstruct these highly boosted particles 
ATLAS has a comprehensive programme 

To calibrate and understand substructure observables 
To meet experimental challenges such as high pile-up 
To measure Standard Model processes with boosted particles 
To search for new physics with boosted particles 

Many interesting studies: these slides are only a selection 
Lots of new results coming soon 
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Some ATLAS Papers on Substructure and 
Boosted Heavy Particles 
Performance and Validation of Q-Jets at ATLAS ATLAS-CONF-2013-087 

Jet Charge Studies in ATLAS ATLAS-CONF-2013-086 

Performance of Pile-up Subtraction for Jet Shapes ATLAS-CONF-2013-085 

Performance of Boosted Top Quark Identification ATLAS-CONF-2013-084 

Pile-Up Subtraction and Suppression for Jets ATLAS-CONF-2013-083 

Performance of Jet Substructure Techniques for 
Large-R Jets 

arXiv:1306.4945 

Jet Mass and Substructure of Inclusive Jets JHEP 05 (2012) 128 

Search for Resonances Decaying into Top-Quark 
Pairs Using Fully Hadronic Decays 

JHEP 01 (2013) 116 

ATLAS Measurements of Properties of Jets For 
Boosted Particle Searches 

Phys. Rev. D 86 072006 

A Search for ttbar Resonances in the Lepton Plus 
Jets Final State with ATLAS using 14 fb-1 

ATLAS-CONF-2013-052  
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ADDITIONAL MATERIAL 
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ATLAS Coordinate System 

Right-handed system with x-axis pointing to the 
LHC centre and y-axis pointing upwards 
Polar angle, θ, is measured w.r.t. LHC beamline 
Azimuthal angle, φ, is measured w.r.t. x-axis 
Rapidity y = 0.5 ln[(E + pZ)/(E – pZ)] 
Pseudorapidity, η 

 is approximation of rapidity, y, in high energy limit 
η= -ln tan(θ/2) 

pT = p sin θ, ET = E sin θ 
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Topoclustering 

23 16th September 2013 David Wardrope 



Different Jet Clustering Algorithms 
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G. Salam 
arXiv:0906.1833v2 [hep-ph]  



Mass Calibration Validation using Track-Jets 
Jet mass scale validated by comparing to jets reconstructed from tracks 

uncorrelated systematics: tracker vs calorimeter 
pile-up reduced by using only tracks from hard scatter vertex 
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Mitigating the Effects of Pile-Up: Grooming 

By reducing the effective jet area, grooming 
effectively eliminates the impact of pile-up 

although at cost of some information about jet 
26 16th September 2013 David Wardrope 
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Pile-Up Subtraction for Substructure 

Pile-up subtraction effectively removes pile-up 
effects from substructure observables 

√d12 = the kT distance between the two final clusters in jet 
27 16th September 2013 David Wardrope 
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Comparison of Trimming and Subtraction 

Both methods perform well 
Different advantages/disadvantages 

Jet substructure techniques possible in a high pile-up 
environment 

Bodes well for LHC Run 2 and beyond 
28 16th September 2013 David Wardrope 
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Jet Mass 

Decay product separation ΔR ≈ 2m/pT 
For pT > 350 GeV, clear top peak in mass spectrum 

From events where all top decay products are contained 
W peak from events where b is not contained within R=1.0 jet 

For pT > 500 GeV, top decay products are contained more often 
W peak further suppressed as R = 0.3 subjets merge 
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Dealing with HL-LHC Pile-Up 
Planned upgrades of the LHC in the 2020s will see the luminosity 
increase to L = 5×1034

 cm-2s-1 

MC studies indicate that large-R jets and substructure techniques 
can be used in this environment 
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Signal Background 



Top Template Tagger 

Compares energy flow in jet to 300k simulated 
top templates 

jets with an overlap OV3 > 0.7 are considered 
tagged 

31 16th September 2013 David Wardrope 

best template  
match is used 

parton energy 

cluster energy 



HEPTopTagger 
Divides C-A R=1.5 jets into subjets with small R-parameter 

Filters out soft contributions 
Tests all combinations of three subjets for compatibility with 
hadronic top quark 

32 16th September 2013 David Wardrope 
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Mini-Isolation 

Leptonic decay products of top quark boosted too 
Leads to a loss in isolation efficiency if fixed cone used 
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Define lepton pT dependent isolation cone to 
maintain efficiency 
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Lepton Mini-Isolation Performance 

Reducing isolation cone size improves signal efficiency 

34 16th September 2013 David Wardrope 



Jet Substructure 
Jets containing the decay products of a massive 
particle will be distinct from those typically 
caused by a light parton 

Significant jet mass 
Hard 2- or 3-body substructure 

These differences may be obscured by  
QCD radiation 
pile-up and underlying event 

35 16th September 2013 David Wardrope 

Many techniques exist to “tag” and 
“groom” jets, aiming to 

Identify and retain hard substructure 
Reduce impact of soft QCD radiation 

light parton jet 

top jet 
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