

Computing the Universe

Adrian Pope

High Energy Physics Division Argonne National Laboratory

ANL HEP: S. Habib, K. Heitmann, N. Frontiere (UofC) ANL LCF/MCS: H. Finkel , V. Morozov, J. Insley, V. Vishwanath, T. Peterka LANL: D. Daniel, P. Fasel, J. Woodring, J. Ahrens LBNL/UC: Z. Lukic , M. White, J. Carlson

Computational Cosmology: A 'Particle Physics' Perspective

- Primary Research Target: Cosmological signatures of physics beyond the Standard Model
- Structure Formation Probes: Exploit nonlinear regime of structure formation
 - **Discovery Science:** Derive signatures of new physics, search for new cosmological probes
 - **Precision Predictions:** Aim to produce the best predictions and error estimates/distributions for structure formation probes
 - **Design and Analysis:** Advance 'Science of Surveys'; contribute to major 'Dark Universe' missions: BOSS, DES, DESI, LSST...

Structure Formation: The Basic Paradigm

- Solid understanding of structure formation; success underpins most cosmic discovery
 - Initial conditions laid down by inflation
 - Initial perturbations amplified by gravitational instability in a dark matter-dominated Universe
 - Relevant theory is gravity, field theory, and atomic physics ('first principles')

Early Universe:

- Linear perturbation theory very successful (Cosmic Microwave Background radiation)
- Latter half of the history of the Universe:
 - Nonlinear domain of structure formation, impossible to treat without large-scale computing

Cosmological Probes of Physics Beyond the Standard Model

Dark Energy:

- Properties of DE equation of state, modifications of GR, other models?
- <u>Sky surveys</u>, terrestrial experiments

Dark Matter:

- Direct/Indirect searches, clustering properties, constraints on model parameters
- <u>Sky surveys</u>, targeted observations, terrestrial experiments

Inflation:

- Probing primordial fluctuations, CMB polarization, non-Gaussianity
- <u>Sky surveys</u>
- Neutrino Sector:
 - CMB, linear and nonlinear matter clustering
 - <u>Sky surveys</u>, terrestrial experiments

Digitized Sky Survey 1950s-1990s

Sloan Digital Sky Survey 2000-2008

Large Synoptic Survey Telescope 2020-2030 (Deep Lens Survey image)

Precision Cosmology: "Inverting" the 3-D Sky

- Cosmic Inverse Problem:
 - From sky maps to scientific inference
- Cosmological Probes:
 - Measure geometry and presence/growth of structure (linear and <u>nonlinear</u>)
- Examples:
 - Baryon Acoustic Oscillations (BAO), cluster counts, CMB, weak lensing, galaxy clustering...
- Cosmological Standard Model:
 - Verified at 5-10% with multiple observations
- Future Targets:
 - Aim to control survey measurements to ~1%
- The Challenge:
 - Theory and simulation must satisfy stringent criteria for inverse problems and precision cosmology not to be theory-limited!

Computing the Universe: Simulations for Surveys

- Survey Support: Many uses for simulations
 - Mock catalogs, covariance, emulators, etc.
- Simulation Volume: Large (volume, sky-fraction) surveys, weak signals
 - ~ $(3 \text{ Gpc})^3$, memory required ~100 TB -- 1 PB
- Number of Particles: Mass resolutions depend on objects to be resolved
 - ~10⁸ -- 10¹⁰ solar masses requires N ~ 10¹¹ -- 10¹²
- Force Resolution: ~kpc resolution
 - (Global) spatial dynamic range of 10⁶
- Throughput:
 - Large numbers of simulations required (100 -- 1000),
 - Development of analysis suites, and emulators
 - Petascale-exascale computing
- Computationally very challenging!

Simulating the Universe

- Gravity dominates at large scales
 - Vlasov-Poisson equation (VPE)
- VPE is 6D, cannot be solved as a PDE
- N-body methods for gravity
 - No shielding
 - Naturally Lagrangian
- Additional small-scale physics
 - Gas, feedback, etc.
 - Sub-grid modeling eventually
 - HACC is gravity only (for now)

How It All Started: Roadrunner (LANL)

Andrew White

Dec 7, 2007 + What if you had a petaflop/s

But what if it looked like this?

High Performance Computing

- Supercomputers: faster = more "parallel"
 - More nodes
 - Distributed memory parallel (eg. MPI)
 - Network communication, somewhat standard
 - Weak scaling (memory limited)
 - More cores per node
 - Shared memory parallel, "threading" (eg. OpenMP)
 - Many possible models
 - Strong scaling (use local compute)
 - "Memory hierarchy"
 - Balance computational speed, memory movement

• Architecture:

- How to divide real estate (power) on chip
- Heterogeneity
 - Hybrid chips (complicated)
 - Accelerators (PCI bottleneck)
 - Multiple programming styles

HACC (Hybrid/Hardware Accelerated Cosmology Code)

- Large volume, high throughput (weak lensing, large-scale structure, surveys)
 - Dynamic range: volume for long wavelength modes, resolution for halos/galaxy locations
 - Repeat runs: vary initial conditions (realizations), sample parameter space
 - Error control: 1% results
 - Low memory footprint: more particles = better mass resolution
 - Scaling: current and future computers (many MPI ranks, even more cores)

Flexibility

- Supercomputer architecture (CPU, Cell, GPGPU, Blue Gene)
- Compute intensive code takes advantage of hardware
- Bulk of code easily portable (MPI)
- Development/maintenance
 - (Relatively) few developer FTEs
 - Simpler code easier to develop, maintain, and port to different architectures
- On-the-fly analysis, data reduction
 - Reduce size/number of outputs, ease file system stress

Force Splitting

- Gravity is infinite range with no shielding
 - Every particle vs. every other particle
 - Split all-to-all comparison by separation length
- Long-range: Particle-Mesh (PM)
 - Distributed memory, MPI grid/FFT methods
 - ~10⁴ dynamic range, slowly varying
 - Portable
- Short-range:
 - Shared memory, particle methods
 - ~10² dynamic range, quickly varying
 - Particle "cache" in overload zone
 - No additional MPI code
 - Modular
- Symplectic Integrator:
 - Standard operator splitting
 - "Subcycle" short-range steps

Force Handover

Spectral control of force hand-over

- Cloud-in-Cell grid deposition
 - Simple, local, noisy, anisotropic
- Spectral manipulation of grid force
 - "Quiet" PM, cancellation of low-order error terms
- Empirical fit for real-space short-range force
 - Average Quiet PM over many configurations

Modular short-range force solver

- **P³M**: direct particle-particle comparisons
 - Only for floating-point intense hardware
 - Small handover scale limits N² comparisons
- **TreePM**: low order multipole approximation
 - More complex data-structures and control flow
 - Tree "local" to MPI rank

3D Volume Data

2D Pencil Data

Architectures and Algorithms

- IBM Cell Broadband Engine Accelerator: LANL/Roadrunner (2008)
 - P^3M , MPI + Cell SDK
- IBM Blue Gene/Q: ANL/Mira, LLNL/Sequoia (2012)
 - PPTreePM, MPI + OpenMP + IBM QPX (BG/Q intrinsics)
- **GPGPU:** ORNL/Titan (2012)
 - P³M, MPI + OpenMP + OpenCL

Performance in TFlop/s

Outer Rim Simulation Run

• ANL/Mira (BG/Q), 3 Gpc/h box, 1.1 trillion particles!

50 Mpc/h

z = 10.29

Δ

Movie Captures: Spatial Dynamic Range

3000 Mpc/h

50 Mpc/h

ALC FEARLY SCIENCE

z = 0.70

Movie Captures: Fly-Through

