

Computing the Universe

Adrian Pope

High Energy Physics Division Argonne National Laboratory

ANL HEP: S. Habib, K. Heitmann, N. Frontiere (UofC) ANL LCF/MCS: H. Finkel, V. Morozov, J. Insley, V. Vishwanath, T. Peterka LANL: D. Daniel, P. Fasel, J. Woodring, J. Ahrens LBNL/UC: Z. Lukic, M. White, J. Carlson

Computational Cosmology: A 'Particle Physics' Perspective

- **‣ Primary Research Target:** Cosmological signatures of physics beyond the Standard Model
- ▶ Structure Formation Probes: Exploit nonlinear regime of structure formation
	- **• Discovery Science:** Derive signatures of new physics, search for new cosmological probes
	- **Precision Predictions:** Aim to produce the best predictions and error estimates/distributions for structure formation probes
	- **• Design and Analysis:** Advance 'Science of Surveys'; contribute to major 'Dark Universe' missions: BOSS, DES, DESI, LSST...

Structure Formation: The Basic Paradigm

- **EXECT:** Solid understanding of structure formation; success underpins most cosmic discovery
	- Initial conditions laid down by inflation
	- Initial perturbations amplified by gravitational instability in a dark matter-dominated Universe
	- Relevant theory is gravity, field theory, and atomic physics ('first principles')

‣ Early Universe:

- Linear perturbation theory very successful (Cosmic Microwave Background radiation)
- ▸ Latter half of the history of the Universe:
	- Nonlinear domain of structure formation, impossible to treat without large-scale computing

Cosmological Probes of Physics Beyond the Standard Model

▶ **Dark Energy:**

- Properties of DE equation of state, modifications of GR, other models?
- Sky surveys, terrestrial experiments

Dark Matter:

- Direct/Indirect searches, clustering properties, constraints on model parameters
- Sky surveys, targeted observations, terrestrial experiments

\rightarrow **Inflation:**

- Probing primordial fluctuations, CMB polarization, non-Gaussianity
- **Sky surveys**
- **Neutrino Sector:**
	- CMB, linear and nonlinear matter clustering
	- Sky surveys, terrestrial experiments

Digitized Sky Survey 1950s-1990s

Sloan Digital Sky Survey 2000-2008

Large Synoptic Survey Telescope 2020-2030 (Deep Lens Survey image)

Precision Cosmology: "Inverting" the 3-D Sky

- ‣ **Cosmic Inverse Problem**:
	- From sky maps to scientific inference
- ‣ **Cosmological Probes**:
	- Measure geometry and presence/growth of structure (linear and nonlinear)
- ‣ **Examples**:
	- Baryon Acoustic Oscillations (BAO), cluster counts, CMB, weak lensing, galaxy clustering...
- ‣ **Cosmological Standard Model**:
	- Verified at 5-10% with multiple observations
- **Future Targets:**
	- Aim to control survey measurements to $~1\%$
- ‣ **The Challenge**:
	- Theory and simulation must satisfy stringent criteria for inverse problems and precision cosmology not to be theory-limited!

Computing the Universe: Simulations for Surveys

- ▸ Survey Support: Many uses for simulations
	- Mock catalogs, covariance, emulators, etc.
- **Simulation Volume**: Large (volume, sky-fraction) surveys, weak signals
	- \sim (3 Gpc)³, memory required \sim 100 TB -- 1 PB
- **▶ Number of Particles:** Mass resolutions depend on objects to be resolved
	- $~^{\circ}$ 10⁸ -- 10¹⁰ solar masses requires N \sim 10¹¹ -- 10¹²
- **▶ Force Resolution**: ~kpc resolution
	- (Global) spatial dynamic range of 10^6
- ‣ **Throughput**:
	- Large numbers of simulations required (100 --1000),
	- Development of analysis suites, and emulators
	- Petascale-exascale computing
- **▶ Computationally very challenging!**

Simulating the Universe

- \rightarrow Gravity dominates at large scales
	- Vlasov-Poisson equation (VPE)
- ▶ VPE is 6D, cannot be solved as a PDE
- **N-body methods for gravity**
	- No shielding
	- Naturally Lagrangian
- \rightarrow Additional small-scale physics
	- Gas, feedback, etc.
	- Sub-grid modeling eventually
	- **HACC** is gravity only (for now)

How It All Started: Roadrunner (LANL)

Andrew White

Dec 7, 2007 $+$ What if you had a petaflop/s

But what if it looked like this?

High Performance Computing

- ▶ **Supercomputers**: faster = more "parallel"
	- More nodes
		- Distributed memory parallel (eg. MPI)
		- Network communication, somewhat standard
		- Weak scaling (memory limited)
	- More cores per node
		- Shared memory parallel, "threading" (eg. OpenMP)
		- Many possible models
		- Strong scaling (use local compute)
	- "Memory hierarchy"
		- Balance computational speed, memory movement

‣ **Architecture**:

- How to divide real estate (power) on chip
- Heterogeneity
	- Hybrid chips (complicated)
	- Accelerators (PCI bottleneck)
	- Multiple programming styles

HACC (Hybrid/Hardware Accelerated Cosmology Code)

- **Large volume, high throughput** (weak lensing, large-scale structure, surveys)
	- Dynamic range: volume for long wavelength modes, resolution for halos/galaxy locations
	- Repeat runs: vary initial conditions (realizations), sample parameter space
	- Error control: 1% results
	- Low memory footprint: more particles $=$ better mass resolution
	- Scaling: current and future computers (many MPI ranks, even more cores)

‣ Flexibility

- Supercomputer architecture (CPU, Cell, GPGPU, Blue Gene)
- Compute intensive code takes advantage of hardware
- Bulk of code easily portable (MPI)
- **‣ Development/maintenance**
	- (Relatively) few developer FTEs
	- Simpler code easier to develop, maintain, and port to different architectures
- ▶ On-the-fly analysis, data reduction
	- Reduce size/number of outputs, ease file system stress

Force Splitting

- **EXECUTE:** Gravity is infinite range with no shielding
	- Every particle vs. every other particle
	- Split all-to-all comparison by separation length
- ▶ Long-range: Particle-Mesh (PM)
	- Distributed memory, MPI grid/FFT methods
	- $~^{\circ}$ 10⁴ dynamic range, slowly varying
	- Portable
- **‣ Short-range:**
	- Shared memory, particle methods
	- $~\sim$ 10² dynamic range, quickly varying
	- Particle "cache" in overload zone
		- No additional MPI code
	- Modular
- **EXA** Symplectic Integrator:
	- Standard operator splitting
	- "Subcycle" short-range steps

Force Handover ∆*f*

a Spectral control of force hand-over the spectral control of force hand-over al control of force hand-over and the suite of larger ('smooth') and the suite of the suite of the suite of the *N Cj*e(2^π *jx*/*L*) *i* force hand-c

- Cloud-in-Cell grid deposition
	- − Simple, local, noisy, anisotropic *i*cal, noisy α , anisotropic
- Spectral manipulation of grid force *inple, local, noisy, anisotropic*
tral maninulation of grid force
- "Quiet" PM, cancellation of low-order error terms where **Changes C**₁ cancellation of low-order expansion the Fourier θ T and T in HACC conduction-solve T is the code is the code
- Empirical fit for real-space short-range force 3D Volume Data 2D Pencil all architecture-tunable control and an architecture-tunable particle-based particle-based particle-• Empirical fit for real-space short-ran
- Average Quiet PM over many configurations werage galet FM over Harry comigarat

Modular short-range force solver and the total products of the tot

- **P³M**: direct particle-particle comparisons $\begin{array}{ccc} \mathsf{c}} \mathsf{b} \mathsf{c} \mathsf$ force computation, the bulk of which is dominated by \cdot P°IVI: direct $|$
- Only for floating-point intense hardware $\left\{\begin{matrix} \lambda & \lambda \\ \lambda & \lambda \end{matrix}\right\}$ *2.4. Fast Fourier Transform Implementation*
	- Small handover scale limits N2 comparisons particles, and *N^g* the total number of grid points. The short-- Sinali nandover scale limits N° compans
- TreePM: low order multipole approximation **in TreePM:** low order multipole approximation and the MACC's pro-
- and complex data-structures and control flow and second particles in the number of part - iviore complex data-structures and cont
- Tree "local" to MPI rank

gorithm which allows an FFT to be taken in each di-

3D Volume Data **1988 12D Pencil Data**

Architectures and Algorithms

- ▶ **IBM Cell Broadband Engine Accelerator:** LANL/Roadrunner (2008)
	- $P³M$, MPI + Cell SDK
- ‣ **IBM Blue Gene/Q:** ANL/Mira, LLNL/Sequoia (2012)
	- PPTreePM, MPI + OpenMP + IBM QPX (BG/Q intrinsics)
- ▶ **GPGPU: ORNL/Titan (2012)**
	- $P³M$, MPI + OpenMP + OpenCL

Performance in TFlop/s Performance in TFlop/s

Outer Rim Simulation Run

Fig. 2. *Visualization of the full density field in a* 68 *billion particle,*

3*.*43 *Gpc box-size simulation with HACC on a single BG/Q rack (the*

final submission will use 48 racks or more), with zoom-ins down to a

• ANL/Mira (BG/Q), 3 Gpc/h box, 1.1 trillion particles!

Figure 14: *Weak and strong scaling on Titan (left panel) and BG*/*Q systems (right panel, results from Mira and Sequoia). Weak*

*systems). Strong scaling results are for a fixed-size problem – 1024*³ *particles in a 1.42Gpc box. Optimal scaling is shown in*

50 Mpc/h

 $z = 10.29$

 $\int_{\frac{1}{M}}$ **Los Alamos** Argonne

Δ

Movie Captures: Spatial Dynamic Range

3000 Mpc/h

50 Mpc/h

 $z = 0.70$

Movie Captures: Fly-Through

