The challenges of high luminosity and jets

Zack Sullivan

Illinois Institute of Technology CTEQ Collaboration CTEQ

September 16, 2013

My take on Snowmass "Top algorithms and detectors" summary (arXiv:1307.6908)

Theory and jets

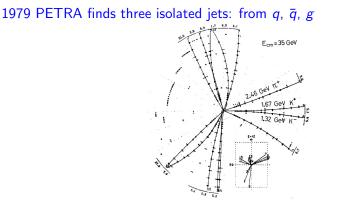
- Jet definitions
- What do we want to see?

Experimental predictions for high luminosity

- "Low" energy jets ($p_{Tj} < 100 \text{ GeV}$)
- Boosted jets (focus on top)

3 Conclusions

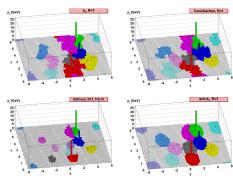
Theory and jets


- Jet definitions
- What do we want to see?

Experimental predictions for high luminosity

- "Low" energy jets ($p_{Tj} < 100 \text{ GeV}$)
- Boosted jets (focus on top)

3 Conclusions

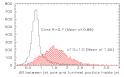

QCD becomes convincing in low multiplicity

22.9.80

This picture has dominated our thinking about QCD radiation as nice isolated jets ever since.

Jet definitions

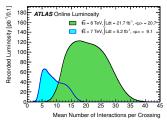
Modern jet algorithms cluster energy with successive recombination into various arbitrary objects.


General iterative jet algorithm:

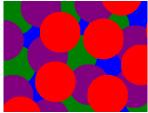
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}
ight)rac{\Delta R_{ij}}{R_{ ext{cut}}}$$

Combine pair with smallest distance, remove smallest object, repeat.

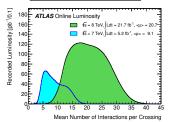
- p = -1: Anti-k_T Choice for jets at LHC Will it hold up at 14 TeV?
- p = 0: Cambridge/Aachen
 Form of adaptive cone
 Popular for "boosted jets"


Theorists' choice until 2001 After $D \ensuremath{\emptyset}$ measurement, not

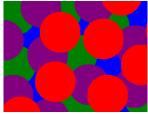
DØ, Grinstein W&C talk 2001


14 TeV LHC will have no isolated jets

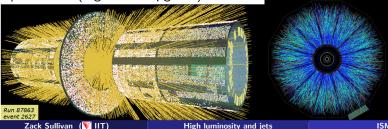
Pileup at 7/8 TeV


Snowmass studies considered:

 $<\mu>=$ 50 (baseline) $<\mu>=$ 140 (high lumi. upgrade) $\frac{\text{Artist's rendition of anti-}K_T}{\text{at 14 TeV LHC}}$


14 TeV LHC will have no isolated jets

Pileup at 7/8 TeV



Snowmass studies considered:

 $<\mu>=$ 50 (baseline) $<\mu>=$ 140 (high lumi. upgrade) $\frac{\text{Artist's rendition of anti-}K_T}{\text{at 14 TeV LHC}}$

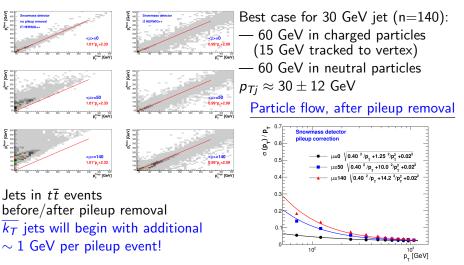
LHC events will look a lot like RHIC events

• The first goal will be to reproduce the known Standard Model.

- Vector bosons: $W \rightarrow jj, Z \rightarrow jj$
- Top quarks: $t \rightarrow Wb \rightarrow jjb/\ell\nu b$
- Various SM cross sections: $t\overline{t}$, Z + jets, W + jets, $\gamma + jets$, etc.
- The second goal will be to measure new physics.
 - Higgs: $H \rightarrow b\bar{b}$, $H \rightarrow WW \rightarrow \ell \nu j j$, etc.
 - SUSY: $ilde{g}
 ightarrow q ar{ar{q}}
 ightarrow q ar{ar{q}} \chi_1^0$, etc.
 - Any cascade decay with nearly degenerate states.
 - Z', W', $T \rightarrow tj$

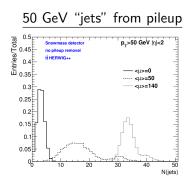
Most of these signals produce low energy jets ($p_T < 100 \text{ GeV}$). Heavy resonance searches will produce hard jets ($p_T > 700 \text{ GeV}$). Can we see any of this in a high luminosity environment?

Theory and jets


- Jet definitions
- What do we want to see?

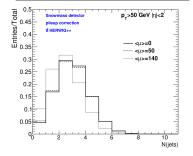
2 Experimental predictions for high luminosity

- "Low" energy jets ($p_{Tj} < 100 \text{ GeV}$)
- Boosted jets (focus on top)


3 Conclusions

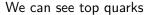
Anti- K_T jets under large pileup

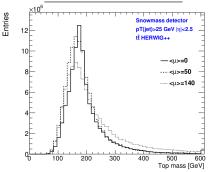
Low energy jets (< 100 GeV) will have poor energy resolution.


Pileup jets/pileup subtraction

You have to ignore 80–90% of the 50 GeV jets you reconstruct. What will this do to triggers?

- Jet triggers only for 400 GeV jets?
- No traditionally isolated e.
- Can you track μ through this?

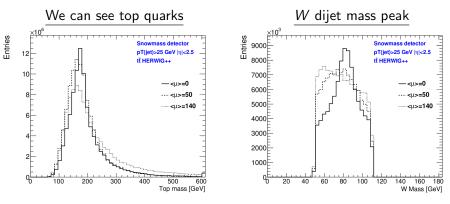

Pileup (over-)subtracted jets



Pileup removal: $-\frac{\text{jet area}}{\text{detector area}} \times E_{\text{det}}^{\text{tot}}$ This does not work at higher lumi.

Need to use local information: \Rightarrow sensitivity to local fluctuations This is THE key problem to solve

Can we see the Standard Model in low-energy jets?


Jet Energy Scale (JES) $\sim 2.5\times$ worse

Conclusion:

Improved measurements of m_t , single-top, $t\bar{t}$ -assym., etc. not possible w/o new ideas

arXiv:1307.6908

Can we see the Standard Model in low-energy jets?

Jet Energy Scale (JES) $\sim 2.5 \times$ worse W/Z not resolvable in jets Conclusion:

Improved measurements of m_t , single-top, $t\bar{t}$ -assym., etc. not possible w/o new ideas

 $H \rightarrow b\bar{b}$ challenging

Conclusion:

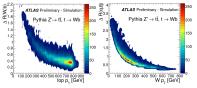
Need new jet definitions for low P_T jets with less sensitivity to pileup

arXiv:1307.6908

Theory and jets

- Jet definitions
- What do we want to see?

2 Experimental predictions for high luminosity

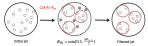

- "Low" energy jets ($p_{Tj} < 100 \text{ GeV}$)
- Boosted jets (focus on top)

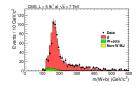
3 Conclusions

High P_T using jet substructure: boosted top jets

Early motivation: High mass resonances ($Z^\prime/W^\prime>1.5~{\rm TeV})$ the top quark is highly boosted

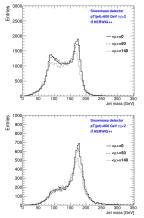
It becomes difficult to reconstruct isolated jets from $t \rightarrow bW \rightarrow bjj$




ATLAS-CONF-2012-065

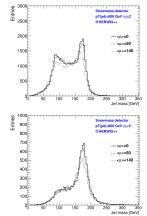
Many "boosted top" algorithms have been developed: (Hot topic!)

Filtering	Butterworth et al. PRL 100 (2008)
Pruning	Ellis et al. PRD 80 (2009)
Trimming	Krohn et al. JHEP 1002 (2010)
Mass-drop	Butterworth et al. PRL 100 (2008)
JHU tagger	Kaplan et al. PRL 101 (2008)
HEP tagger	Plehn et al. JHEP 1010
tree-less	Jankowiak et al. JHEP 1106
y-splitter	Butterworth et al. PRD 55 (2002)
energy flow	Thaler, Wang JHEP 0807
N-subjettiness Kim PRD 83 (2011), Thaler et al. JHEP 1103	
Shower decon.Soper et al. 1102.3480	
Multivariate	Gallicchio et al. JHEP 1104
Template	Almeida et al. PRD 82 (2010)

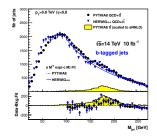

The basic idea is to create a fat (large ΔR) jet, and find identifiable clustered substructure we can associate with hadronic top decays.

Boosted top jets at 14 TeV: Particle flow+anti- k_T

Combining particle flow (PF) and anti- k_T : not sensitive to pileup


Very sensitive to p_T Need $p_{Tt} \gtrsim 800$ GeV

Zack Sullivan (<u> IIT</u>)


ISMD 2013 11 / 14

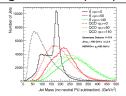
Boosted top jets at 14 TeV: Particle flow+anti- k_T

Combining particle flow (PF) and anti- k_T : not sensitive to pileup

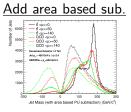
Very sensitive to p_T Need $p_{Tt} \gtrsim 800$ GeV If you can *b*-tag inside a top jet and you have 10% JES resolution then PF- $\overline{k_T}$ top-jets are golden

arXiv:1301.5810

The problem w/ PF- $\overline{k_T}$: If $p_{Tt} > 1.6$ TeV, M_t resolution is a factor 2 worse.


Fortunately, there are many other boosted algorithms

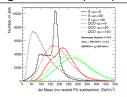
Zack Sullivan (**)** IIT)


ISMD 2013 11 / 14

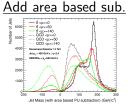
Other boosted algos: local vs. global pileup removal

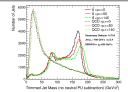
All boosted algorithms must deal with pileup: Begin w/ 650 GeV C/A jets Charged Hadron pileup sub.

Cannot tell top jets from light jets



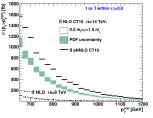
Negative mass jets, poor resolution


Zack Sullivan (W IIT)


Other boosted algos: local vs. global pileup removal

All boosted algorithms must deal with pileup: Begin w/ 650 GeV C/A jets Charged Hadron pileup sub. Add jet trimming instead

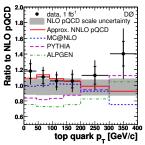
Cannot tell top jets from light jets


Trimming uses substructure. -Very stable light jets -Correctable top jets

Conclusions: Local measures of pileup are important. Experimental reconstruction will not be a limiting factor.

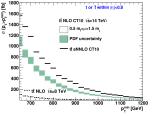
Negative mass jets, poor resolution

Tails and accidentals: theoretical issues dominate


• Tails: Theory is poor at predicting tails of distributions.

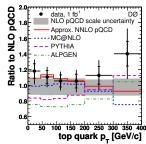
Large corrections to high- $p_T t\bar{t}$ dijet spectrum are predicted.

—Explains part of anomaly in LHC $t\bar{t}$ data never shown publicly.



DØ, PLB 693, 515 (10)

LO *n*-jet matching sort-of fakes it. NLO *n*-jet matching needed.


Tails and accidentals: theoretical issues dominate

• Tails: Theory is poor at predicting tails of distributions.

Large corrections to high- $p_T t\bar{t}$ dijet spectrum are predicted.

DØ, PLB 693, 515 (10)

-Explains part of anomaly in LHC $t\bar{t}$ data never shown publicly.

- LO *n*-jet matching sort-of fakes it. NLO *n*-jet matching needed.
- Accidentals: For the most part, extreme phase space configurations are not considered in current measurements.

E.g., In $W' \rightarrow tb$ searches, Wjj/Wbj can fake the tj final state. $p_{Tj} > 750$ GeV: $Wjj/Wbj \sim 4 \times t\bar{t}$ w/ 1 boosted tag arXiv:1307.1820 Tails and accidentals are examples of extreme corners of phase space, and will require significant theoretical work to improve.

Conclusions

Theorists have a lot of work to do to prepare for 14 TeV.

- High-p_T jets: Continued improvement in higher-order calculations and resummation will enable full use of boosted objects. Jet algorithms that use substructure will be fully vetted by the experiments.
- Low-*p_T* jets: Are what we want to reproduce the Standard Model. We will be in an intrinsically high multiplicity (noisy) environment.

The Sea of Noise

This qualitatively different regime will require a new approach for precision jet measurements.

We look forward to the challenge.

THANK YOU