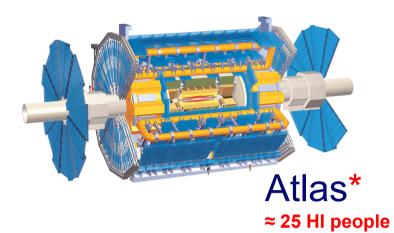
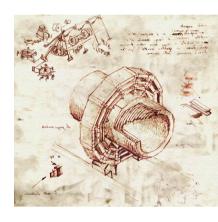
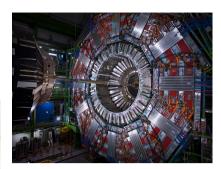
Particle production sources in heavy-ion collisions at RHIC and LHC

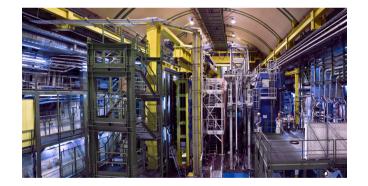

Georg Wolschin Heidelberg University Institut für Theoretische Physik Philosophenweg 16 D-69120 Heidelberg




Topics

- 1. Introduction: PbPb @ LHC
- 2. Relativistic Diffusion Model (RDM)
- 3. Comparison with RHIC and LHC data
- 4. Conclusion

1. LHC Detectors for RHIs



CMS* da Vinci style ≈ 60 HI people

LHCb No HI people yet

Alice*: L3 magnet ≈ 1,000 HI people * heavy-ion capability

2. Particle production: Relativistic Diffusion Model (RDM) $\partial^2 \left[\frac{\partial^2}{\partial t} \right] = \frac{\partial^2}{\partial t} \left[\frac{\partial^2}{\partial t} \right]$

$$\frac{\partial}{\partial t}R(y,t) = -\frac{\partial}{\partial y} \Big[J(y)R(y,t) \Big] + D_y \frac{\partial^2}{\partial y^2} [R(y,t)]^{2-q}$$

R (y,t) Rapidity distribution function. The standard linear Fokker-Planck equation corresponds to q = 1, and a linear drift function. For the three components k = 1,2,3 of the rapidity distribution,

$$\frac{\partial}{\partial t}R_k(y,t) = -\frac{1}{\tau_y}\frac{\partial}{\partial y}\Big[(y_{eq}-y)\cdot R_k(y,t)\Big] + D_y^k\frac{\partial^2}{\partial y^2}R_k(y,t)$$

Linear drift term with relaxation time τ_v Diffusion term, D_v=const.

Relaxation time and diffusion coefficient are related through a dissipation-fluctuation theorem. The broadening is enhanced due to collective expansion.

$$\langle y_{1,2}(t) \rangle = y_{eq} [1 - \exp(-t/\tau_y)] \mp y_{max} \exp(-t/\tau_y)$$
 mean value
$$\sigma_{1,2,eq}^2(t) = D_y^{1,2,eq} \tau_y [1 - \exp(-2t/\tau_y)]$$
 variance

Linear Model: G. Wolschin, Eur. Phys. J. A5, 85 (1999); with 3 sources: Phys. Lett. B 569, 67 (2003); PLB 698, 411 (2011); M. Biyajima, M. Ide, M. Kaneyama, T. Mizoguchi, and N. Suzuki, Prog. Theor. Phys. Suppl. 153, 344 (2004)

ICNFP_2013

Equilibrium value of the rapidity determined from energy and momentum conservation as

$$y_{eq}(b) = -0.5 \cdot \ln \frac{\langle m_1^T(b) \rangle \exp(y_{max}) + \langle m_2^T(b) \rangle \exp(-y_{max})}{\langle m_2^T(b) \rangle \exp(y_{max}) + \langle m_1^T(b) \rangle \exp(-y_{max})}$$

with transverse masses

$$\langle m_{1,2}^{T}(b) \rangle = \sqrt{m_{1,2}^{2}(b) + \langle p_{T} \rangle^{2}}$$

For large beam rapidities (LHC) this reduces to

$$y_{eq}(b) \simeq 0.5 \cdot \ln \frac{\langle m_2^T(b) \rangle}{\langle m_1^T(b) \rangle}$$

And the impact-parameter dependent numbers of participants can be determined from the geometric overlap, or the Glauber model.

Diffusion of produced particles in pseudorapidity space

Pseudorapidity distributions of produced particles are obtained through the Jacobian transformation

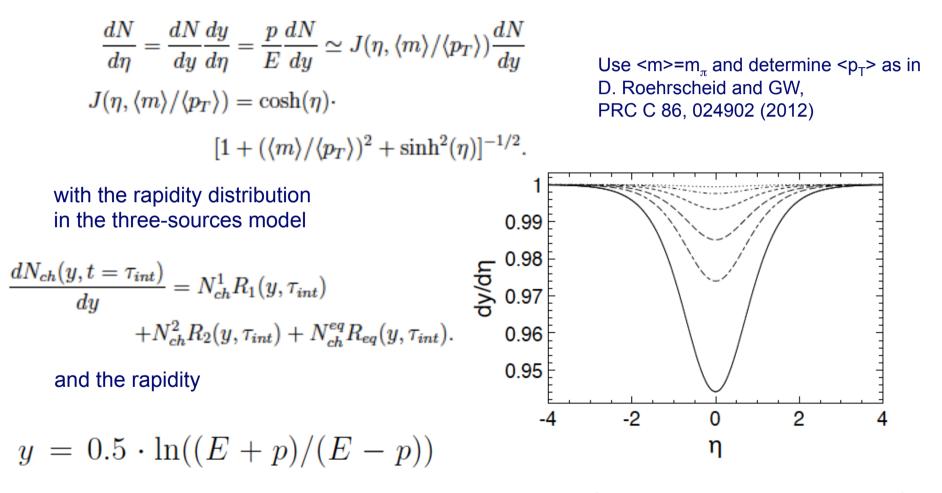
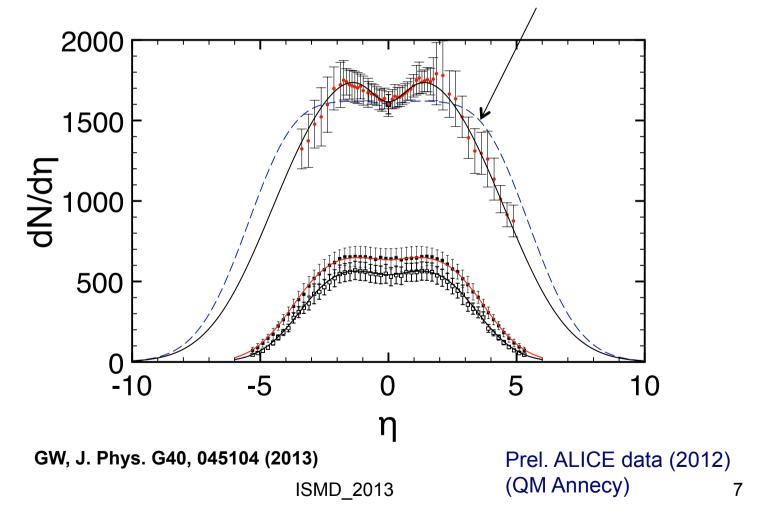
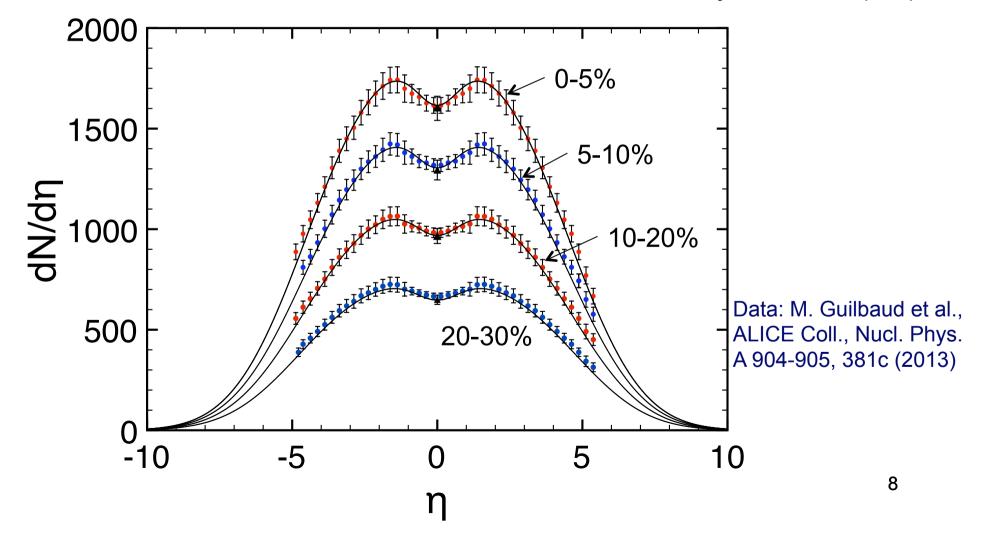



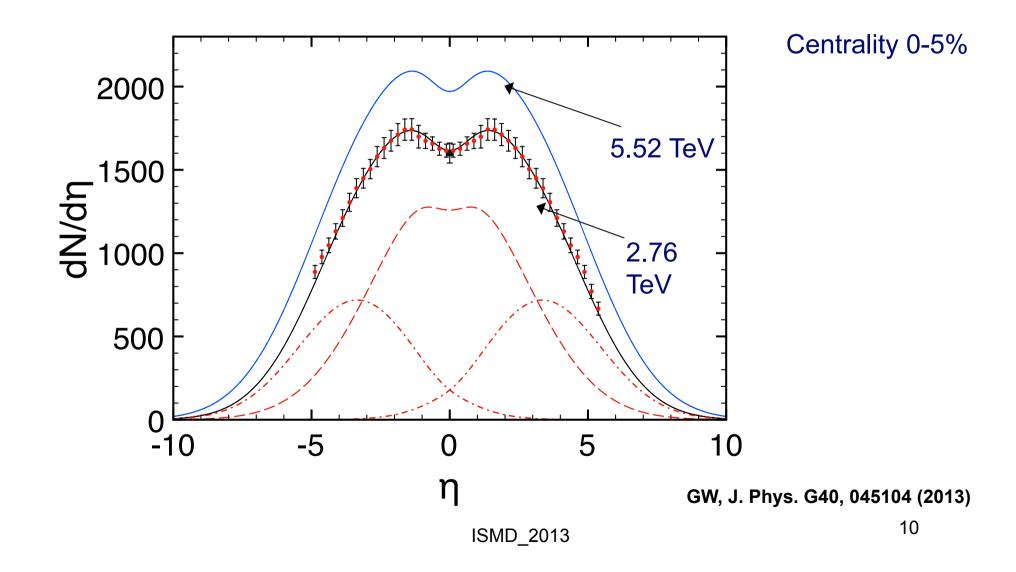
Figure 1: The Jacobian $dy/d\eta$ for $\langle m \rangle = m_{\pi}$ and average transverse momenta (bottom to top) $\langle p_T \rangle = 0.4, 0.6, 0.8, 1.2, 2$ and 4 GeV/c.


3. Comparison with the RDM prediction

Central PbPb @ 2.76 TeV Prediction GW in PLB 698, 411 (2011)

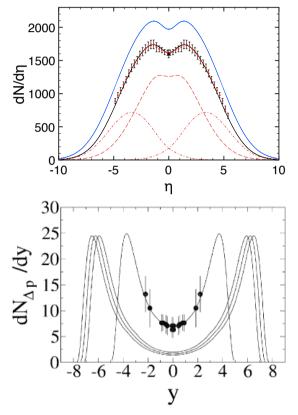
RDM χ^2 fits to LHC/ALICE results for 2.76 TeV PbPb

GW, J. Phys. G40, 045104 (2013)



Parameters of the 3-sources RDM at RHIC and LHC energies

Table 1. Three-sources RDM-parameters τ_{int}/τ_y , $\Gamma_{1,2}$, Γ_{gg} , and N_{gg} . N_{ch}^{1+2} is the total charged-particle number in the fragmentation sources, N_{gg} the number of charged particles produced in the central source. Results for $\langle y_{1,2} \rangle$ are calculated from y_{beam} and τ_{int}/τ_y . Values are shown for 0–5% PbPb at LHC energies of 2.76 and 5.52 TeV in the lower two lines, with results at 2.76 TeV from a χ^2 -minimization with respect to the preliminary ALICE data [2], and using limited fragmentation as constraint. Corresponding parameters for 0–6% AuAu at RHIC energies are given for comparison in the upper four lines based on PHOBOS results [1]. Parameters at 5.52 TeV denoted by * are extrapolated. Experimental midrapidity values (last column) are from PHOBOS [1] for $|\eta| < 1$, 0-6% at RHIC energies and from ALICE [13] for $|\eta| < 0.5$, 0-5% at 2.76 TeV.


$\sqrt{s_{NN}}$ (TeV)	y_{beam}	$ au_{int}/ au_y$	$< y_{1,2} >$	$\Gamma_{1,2}$	Γ_{gg}	N_{ch}^{1+2}	N_{gg}	$\frac{dN}{d\eta} _{\eta\simeq 0}$
0.019	∓ 3.04	0.97	∓ 1.16	2.83	0	1704	-	$314 \pm 23[1]$
0.062	∓ 4.20	0.89	∓ 1.72	3.24	2.05	2793	210	$463 \pm 34[1]$
0.13	∓ 4.93	0.89	∓ 2.02	3.43	2.46	3826	572	$579 \pm 23[1]$
0.20	∓ 5.36	0.82	∓ 2.40	3.48	3.28	3933	1382	655 ± 49 [1]
2.76	∓ 7.99	0.87	∓3.34	4.99	6.24	7624	9703	1601 ± 60 [13]
5.52	7 8.68	0.85^{*}	∓ 3.70	5.16^{*}	7.21*	8889*	13903*	1940*

3 sources, and prediction for 5.52 TeV PbPb

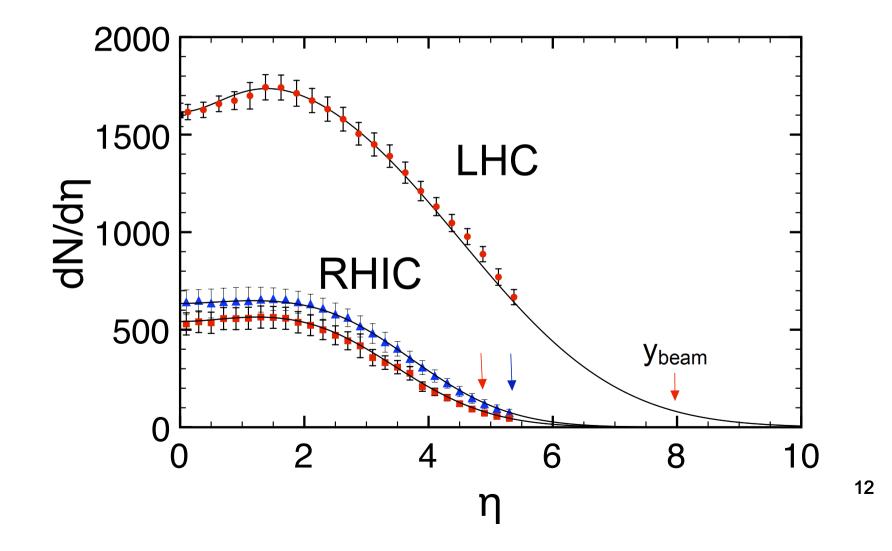
LHC: Small fragmentation-source contributions at midrapidity

Charged hadrons

Net protons

PbPb @ 2.76 TeV:

The smallness of the fragmentation sources at midrapidity is in qualitative agreement with results from our QCDbased microscopic model

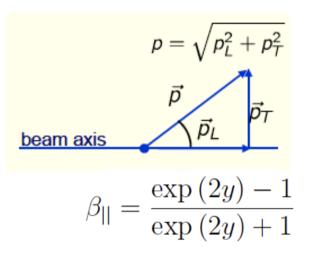

Y. Mehtar-Tani and GW, Phys. Rev. Lett. 102,182301 (2009); PRC C80, 054905 (2009)

for net-baryon distributions, which indicates a midrapidity net-baryon yield $dN/dy(y=0) \approx 4$, corresponding to 12 valence quarks, as cp. to 1248 valence quarks in the system (the net-baryon distribution has no gluon-gluon source)

YMT&GW, Phys. Lett. B688, 174 (2010); GW, Phys. Lett. B 698, 411 (2011)

Cross section contributions beyond the beam rapidity

Charged hadrons

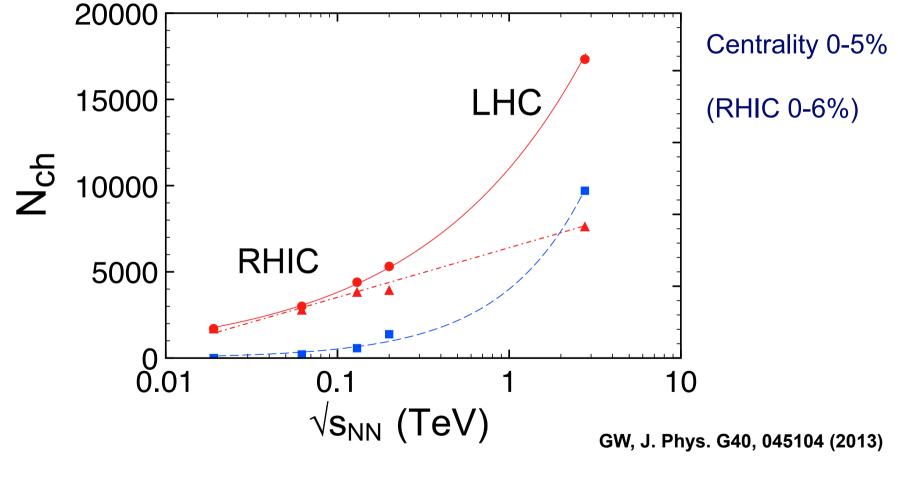

Cross section contributions beyond the beam rapidity

The relation between rapidity
$$y = \frac{1}{2} \ln \frac{1 + \beta_{||}}{1 - \beta_{||}}$$

and pseudorapidity

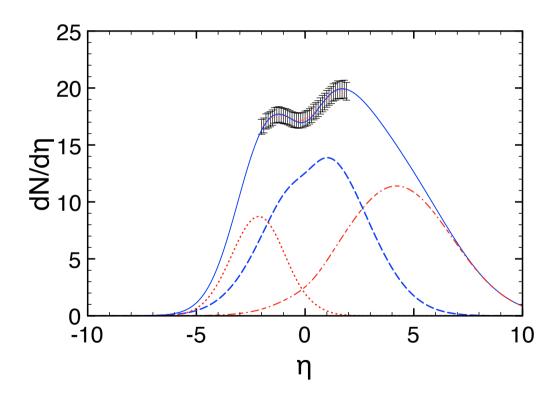
$$\eta = -\ln\left(\tan(\theta/2)\right)$$

is given by
$$y = \frac{1}{2} \ln \frac{\sqrt{(m/p_T)^2 + \cosh^2 y} + \sinh \eta}{\sqrt{(m/p_T)^2 + \cosh^2 y} - \sinh \eta}$$


which has the limits (1st order expansion)

$$y \to \eta - \ln(m/p_T)$$
 for $m \ll p_T$
 $y \to \eta$ for $p_T \ll m$

About 83% of produced charged hadrons at LHC energies are pions, and for pions the limit $\eta \approx y$ is reached at larger values of η than for protons.


VLGCMM13

Content of the sources as function of energy

3-sources model (RDM): central pPb @ 5.02 TeV

Min.bias 5.02 TeV pPb @ LHC

 $p_p = = 4 \text{ TeV/c}$ $\sqrt{s_{NN}} = \sqrt{\frac{Z_1 * Z_2}{(A_1 * A_2)}} * 2p_p = 5.02 \text{TeV}$ $y_{\text{beam}}^{cm} = \mp \ln(\sqrt{s_{NN}}/m_0)$ $= \mp 8.586$

Data. ALICE collab., PRL 110, 032301 (2013) Calculation: GW, J. Phys. G40, 045104 (2013)

ISMD_2013

13 TOPIC FOR A MASTER THESIS 15

4. Conclusion

- Charged-hadron production at RHIC and LHC energies has been described in a Relativistic Diffusion Model (RDM).
- * Predictions of pseudorapidity distributions $dN/d\eta$ of produced charged hadrons in the 3-sources RDM at LHC energies rely on the extrapolation of the diffusion-model parameters with $ln(Js_{NN})$
- * In agreement with a QCD-based microscopic model, the contribution of the fragmentation sources from quark-gluon collisions at LHC energies is very small at midrapidity, but substantial at larger values of pseudorapidity η .
- The centrality dependence of the three sources has been investigated in direct comparison with the preliminary ALICE data.