Recent results on vector boson production in association with jets

Giorgi Arabidze – Michigan State University On behalf of the ATLAS collaboration

ISMD13, Chicago, USA 14th – 21st September, 2013

Outline:

- Motivation and overview
- ATLAS experiment
- Z+jets event and scaling factors, based on 2011 data analysis
- W+jets event properties, based on 2010 data analysis
- W/Z event ratio
- Z+jets VBF analysis
- W + \geq 1 b-jets cross section
- W + charm hadron cross section
- Conclusions

Motivation and overview

- Drell-Yan production of W and Z bosons can be used to test perturbative QCD calculations
 - · Inclusive analysis, integrated and rapidity dependent cross-sections
 - Test Parton Distribution Functions (PDFs)
 - Boson P_T and ϕ measurements, in boosted W/Z analysis
 - Understanding interplay between High Order QCD and re-summation
 - Analysis with jet reconstruction Z+jets, W+jets, W/Z in association with Heavy Flavor jets
 - Probe High Order QCD and constrain Parton Densities
- Monte-Carlo modeling
 - Parton Shower and Matrix Element approaches need test and tuning
- Measurements
 - Major background to precision SM measurements and searches for new physics

The ATLAS experiment

Excellent level of performance of ATLAS experiment, during years 2010 (36pb-1) and 2011 (4.66fb-1)

Allowed precise SM measurements

- **Electrons**: EM calorimeter and tracking up to |eta|<2.5
- Muons: Muon spectrometer up to |eta|<2.7
- Jets, MET, forward electrons: Calorimetric coverage up to |eta|<4.9

Z+jets: jet multiplicity and jet P_T

Increased statistics allow an extension of 2010 measurements

- Jet multiplicities up to 7 jets
- Jet P_T up to 700 GeV

Background:

- N_{jet} ≤ 1: multi-jet(QCD), di-boson
- N_{jet} > 1: top-pair production

Good agreement with BlackHat +Sherpa calculations and with predictions from ALPGEN, SHERPA

The MC@NLO parton shower underestimates observed rate for additional jet emission by a factor of two Event selection:

- Lepton $P_T > 25 \text{ GeV}$
- Z->ee or Z->mumu + jets (PT>30GeV, |y| < 4.4)

5

• 66GeV < m(*ll*) < 116GeV

Z+jets: scaling properties

Scaling properties are useful in analysis that employ jet vetoes and separate signal from W/Z+jets backgrounds

Ratio of cross sections for successive jet multiplicities

Data compared to NLO pQCD predictions from BlackHat+Sherpa, and ALPGEN and Sherpa event generators

Exclusive ratios: $R_{(n+1)/n} = N_{Z+(n+1)}/N_{Z+n}$

Exclusive jet multiplicities with two benchmark patterns, both well reproduced by the theory predictions:

Staircase scaling: $R_{(n+1)/n}$ constant, linear fit from $R_{2/1} - R_{5/4}$ describes

$$R_{(n+1)/n} = R_0 + \frac{dR}{dn} * n$$

Poisson scaling, with asymmetric jet PT follows:

$$R_{(n+1)/n} \sim \frac{1}{n}$$

Z+jets: P_T of recoiled Z boson

NLO fixed order Z+ \geq 1 jet underestimate cross section above P_T \approx 80GeV

- At large P_T 2-jet events contribute •
- Use exclusive sum of NLO calculations to have better agreement •

Inclusive

8

Z+jets: Vector Boson Fusion (VBF)

- A veto on a third jet is used to reject Z+jets background in VBF Higgs analysis
- Study of Z+jets events with VBF selection allows to estimate 3rd jet veto efficiency

W+jets: jet multiplicity and P_T

W+jets complementary to Z+jets Background to:

- SM processes: ttbar, single-top production
- Higgs searches and searches beyond SM

10⁴ W→lv + jets ALPGEN △ SHERPA 10³ PYTHIA σ(W + ≥N_{jet} jets) [pb] BLACKHAT-SHERPA ATLAS 10² Good agreement with ALPGEN Ldt=36 pb⁻¹ and BLACKHAT+SHERPA 10 = anti-k_T jets, R=0.4 Worse with SHERPA p_et>30 GeV, |yet|<4.4 1 Theory/Data 0 ≥0 ≥1 >2 >3 >4 Inclusive Jet Multiplicity, Niet

Event selection:

- Lepton PT > 20GeV
- W->enu or W->munu + jets (PT>30GeV, |y| < 4.4)
- MET>25GeV, MT>40GeV

W+jets / Z+jets event ratio

- Allows to exploit the cancellation of theoretical and experimental uncertainties
 - Common systematic uncertainties, such as JES uncertainty, reduces systematics of the V+jets measurement
- Provides model independent sensitivity to the physics coupling to leptons and jets
- Ratio of W+jets / Z+jets as a function of jet P_T threshold in exclusive 1 jet bin

$$R_{jet}(X) = \frac{W + jets(X)}{Z + jets(X)}$$

- Comparison with LO and NLO predictions shows agreement with the data
- With larger data samples from 2011and 2012 will become very precise measurement

W+jets: double-parton interactions

 Two parton scatterings in the same ppcollision, experimentally measured as W +2jets

- Fraction of DPI events in W+2jets data extracted from template fit to normalized transverse momentum balance of two jets
 - jets PT>20GeV, |y|<2.8
- Rate and kinematics in good agreement with predictions of MC models and with previous measurements at lower energies

W+b-jets

- Important test for pQCD in presence of HF quarks
 - Modeling HF production in initial state (PDF) and final state (gluon splitting)
- Competing flavor schemes:
 - Single b final states, require heavy flavor in initial state, modeled by 5FNS
 - Two b final states modeled by 4FNS (u, d, c, s)
- Background to *Higgs* (WH, ZH), *Single-top* measurements and to new physics Searches

Measurements with a single b-jet requirement in the W+1 jet and W+2 jets

Compared with NLO (MCFM and Powheg)

- MCFM corrected for hadronization and DPI effects
- Powheg corrected for DPI effects

Compared with LO (Alpgen)

Scaled to NNLO inclusive W

Total uncertainty in prediction (yellow bars)

 From variations of the normalization and factorization scales, PDF set, DPI model and nonperturbative corrections

Measurements are consistent within 1.5 σ with NLO predictions in 1 -jet and 1+2 -jet bins

W+b-jets: b-jet P_T

Large data-sets allowed measurement of differential cross-section as a function of the bjet PT, for the first time

- Single-top and other backgrounds are subtracted
- Predictions are in agreement with data, within their uncertainties
 - Disagreement larger at high b-jet PT

9/17/13

W + charm hadron cross section

- s-quark is poorly known compared to light quarks, W+c can be used as probe
- Maximum correlation in W+c for s(x) at x ~0.02
 - Large sensitivity to s(x) for 0.0001 <= x <= 0.1

 $D^{\pm}\!/D^{^{\pm}\!\pm}$ decays reconstructed in tracker

Charge correlation between the leptons from W and D(*) used to extract single-charm component: subtracted same-sign contribution (OS – SS)

Yield extracted by fitting the D[±] mass or D^{*}-D⁰ mass diff. in OS-SS

Event selection:

W -> ev or μv + charm hadron (D) D meson reconstructed in D⁺->K- $\pi^{+}\pi^{+}$ and D^{*}+->D⁰ π^{+} with:

• D⁰->K⁻π⁺, D⁰->K⁻π⁺π⁰ or D⁰->K⁻π⁺π⁻π⁺

Measured cross sections compared to a MC@NLO predictions, based on different PDF predictions

- Inner error bar is PDF uncertainty
- Outer error is quadratic sum: PDF +scale+frag

Good agreement with epWZ and NNPDF2.3coll sets

- S-quark enhanced PDFs are favored
- Confirms preference for SU(3) symmetric sea

Summary

- Experimental uncertainties are becoming smaller than theoretical predictions, in large regions of phase space, with 2010-2011 data
 - Higher jet multiplicities and P_{T} ranges
- Experimental study provides insight on QCD models
 - Construction of PDF: flavor symmetric light quark sea favored (W+c studies)
 - Impact of missing higher jet multiplicity and modification by exclusive summation (W/Z+jets)
- Input to Higgs and new physics searches
 - Validation of 3rd jet veto in VBF selection
- More high precision results will come with 2012 ATLAS data

Backup

W+jets: scalar P_T sum (HT)

$$H_{T} = \sum_{leptons, jets} |p_{T}|$$

- H_T [GeV]
- HT is sensitive to factorization and normalization scales in fixed-order calculations
- Discrepancy at large HT (higher jet multiplicity) in BLACKHAT due to limited order of calculations
- Agreement improved on HT with BlackHat by replacing NLO W+≥1 jet with exclusive sum:
 - $W+\geq 1 = (W+1) + (W+2) + (W+3) + (W+\geq 4)$
 - Confirmed by Z+jets analysis

Jet Reconstruction

Calorimeter cells calibrated to electromagnetic (EM) scale

- Input to jet reconstruction
 - 3D topological clusters
 - Uses nearest neighbor energy significance to localize showers in calorimeter
 - Efficient noise suppression
- Jet reconstruction
 - Jets are reconstructed using the anti-Kt algorithm with size parameter R set at 0.4
- Jet Calibration
 - Energy and momentum of a jet measured in the calorimeter are corrected
 - For non-compensation, energy losses in dead material, shower leakage

Jet Energy Scale

- 2010 JES calibration from MC
- Uncertainties from MC, single hadron response and dijet balance validated using in-situ techniques
- 2011 JES calibration from MC with corrections using in situ technique
 - Uncertainties from in-situ techniques

Impact of W, Z data on PDF

- Little is known about s-quark, current information from neutrinonucleon scattering
- Flavor SU(3) symmetry suggest equal light sea quark distributions
- But strange quarks might be suppressed due to mass effect
- W, Z differential cross section measurements sensitive to s-PDF at Bjorken x ≈ 0.01
 - Use ATLAS W,Z and HERA ep data in HERAFitter (NNLO) -> epWZfit

Z+jets scaling

- Poisson scaling, well known in FSR QED from e+e- colliders, when large difference between the scale of the process Q and the radiation cut-off scale Q0
 - For Q>>Q0 each emission is independent from previous one
- At hadron colliders, QCD jet radiation of the initial state partons has huge impact.
 - Poisson scaling $(R_{(n+1)/n} = \langle n \rangle / n+1; P_n = \langle n \rangle^n e^{\langle n \rangle} / n!)$ Abelian
 - With large leading jet PT cut, we move to sufficiently high x, such that additional jet ratios are unaffected by the PDF
 - Staircase scaling ($R_{(n+1)/n} = e^{-b}$; $\sigma_n = \sigma_0 e^{-bn}$) non Abelian
 - Appears with democratic jet selection and no major scale separation
 - R_{1/0} suppressed by PDF (by 60%)

Z+jets: ratio

 Ratio of the cross sections for two successive multiplicities, in events passing the VBF preselection

W, Z cross sections

 Uncertainties dominated by lepton reconstruction, identification efficiency and Missing ET for W

Electron channels (%)	W [±]	W +	W^{-}	Ζ
Trigger	0.4	0.4	0.4	<0.1
Electron reconstruction	0.8	0.8	0.8	1.6
Electron identification	0.9	0.8	1.1	1.8
Electron isolation	0.3	0.3	0.3	_
Electron energy scale and resol.	0.5	0.5	0.5	0.2
Non-operational LAr channels	0.4	0.4	0.4	0.8
Charge misidentification	0.0	0.1	0.1	0.6
QCD background	0.4	0.4	0.4	0.7
$Electroweak + t \overline{t}$ background	0.2	0.2	0.2	<0.1
E_T^{miss} scale and resolution	0.8	0.7	1.0	
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.6	0.6	0.6	0.3
Total experimental uncertainty	1.8	1.8	2.0	2.7
$A_{W/Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0
Total excluding luminosity	2.3	2.4	2.8	3.3
Luminosity	3.4			

Muon channels (%)	W [±]	W +	<i>w</i> ⁻	Ζ	
Trigger	0.5	0.5	0.5	0.1	
Muon reconstruction	0.3	0.3	0.3	0.6	
Muon isolation	0.2	0.2	0.2	0.3	
Muon $p_{\rm T}$ resolution	0.04	0.03	0.05	0.02	
Muon p_{T} scale	0.4	0.6	0.6	0.2	
QCD background	0.6	0.5	0.8	0.3	
Electroweak $+t\bar{t}$ background	0.4	0.3	0.4	0.02	
E_T^{miss} resolution and scale	0.5	0.4	0.6	-	
Pile-up modeling	0.3	0.3	0.3	0.3	
Vertex position	0.1	0.1	0.1	0.1	
$C_{W/Z}$ theoretical uncertainty	0.8	0.8	0.7	0.3	
Total experimental uncertainty	1.6	1.7	1.7	0.9	
$A_{W/Z}$ theoretical uncertainty	1.5	1.6	2.1	2.0	
Total excluding luminosity	2.1	2.3	2.6	2.2	
Luminosity	3.4				