Recent CMS Experiment Results on Multiparticle Aspects of High-Density Systems In Heavy Ion Collisions

Victoria Zhukova (MIT) for the CMS Collaboration

pPb Collisions 2013

- 4 High-Multiplicity HLT trigger thresholds
- Each recorded 20M events over a 3-week period
- Integrated luminosity: 31nb⁻¹
- re-analyzed PbPb data: 2.3µb⁻¹ (50-100%)

CMS Experiment at the LHC

Two-Particle Correlations

Two-particle azimuthal angular correlation function:

- was first observed at RHIC

- have been investigated over a broad range of energy for different colliding systems

Method

Ridge(s)!

PLB 718 (2013) 795

2013 pPb results

Unexpected remarkable similarity between pPb and PbPb!

The Questions To Be Answered:

- What is the origin of the ridge in small systems ?
 - Collective flow ?
 - Quantum interference of gluons (CGC) ?
 - … or something else ?
- What are the initial state fluctuations ?
- Methods:
 - Compare 2- and 4-particle correlations in different collision systems
 - Study high-order harmonics
 - multiplicity dependence

Long and short range explained

1D Δφ Correlation Functions

The pPb and PbPb yields show similar correlation structure and p_T dependence over a wide range of p_T trig.

The Ridge Yield in Different Systems

PbPb Vs_{NN} = 2.76 TeV |∆η|>2 a) Associated Yield / (GeV/c) pPb vs_{NN} = 5.02 TeV, 2013 0.6 CMS pPb vs_{NN} = 5.02 TeV, 2012 Opp [s = 7 TeV pPb CGC 0.4 — Q²_a(proton)=0.336 GeV² ...Q₀²(proton)=1.008 GeV²Q₀²(proton)=1.680 GeV 0.2 300 100 200 N^{offline}

> Emergence around Ntrk ~ 50 Independent of system size

p_T Dependence of v_n

Remarkable similarity in PbPb and pPb for same multiplicity

Multiplicity Dependence of v₂

v_2 {4} turn-on around $N_{trk} \sim 50$; weak multiplicity dependence

Multiplicity Dependence of v₃

Independent of system size

Other Evidence of Hydro Flow in pPb?

Inverse slope increases with particle mass and with multiplicity. Reminiscent of radial flow.

Conclusions

- Unexpected similarity between pPb and PbPb ridge signal strength!
- CMS has measured v₂ and v₃ coefficients in pPb and PbPb.
- Similar p_T and multiplicity dependence is observed between pPb and PbPb.
- v₃ is identical in pPb and PbPb.
- The ridge becomes apparent at the same multiplicity independent of the system size.
- Other evidences for hydro behavior are observed.

