

Large x Physics: Recent Results and Future Plans

Roy J. Holt

XLIII International Symposium on Multiparticle Dynamics

IIT, Chicago, IL 17 September 2013

Why is high x interesting?

- Valence region defines a hadron
 - baryon number, charge, flavor content, total spin, ...
- Keen discriminator of nucleon structure models
- High x, low Q² evolves to low x, high Q² -> impact on HEP
- New generation of experiments at JLab focused on high x
- New Drell-Yan experiment at FNAL focused on high x sea
- Proposed Electron Ion Collider can also explore high x

Some experiments in deep inelastic scattering

Argonne National Laboratory

Partonic structure of the nucleon

Structure function

EIC whitepaper

Argonne National Laboratory

4

The Neutron Structure Function

Proton structure function: $F_2^p = x \left[\frac{4}{9} (u + \overline{u}) + \frac{1}{9} (d + \overline{d}) + \frac{1}{9} (s + \overline{s}) \right]$ Neutron structure function (isospin symmetry): $u_p(x) = d_n(x) \equiv u(x)$ $F_2^n = x \left[\frac{4}{9} (d + \overline{d}) + \frac{1}{9} (u + \overline{u}) + \frac{1}{9} (s + \overline{s}) \right]$

Parton model ->

Ratio:

$$\frac{F_2^n}{F_2^p} = \frac{u + \bar{u} + 4(d + \bar{d}) + s + \bar{s}}{4(u + \bar{u}) + d + \bar{d} + s + \bar{s}}$$

• Focus on high x:

$$\frac{F_2^n}{F_2^p} = \frac{[1+4(d/u)]}{[4+(d/u)]}$$

- Three 12-GeV JLab experiments
 - Deuteron: radial TPC and CLAS12
 - ³H/³He: ³H target and existing spectrometers
 - Proton: PVDIS and SoLID

CJ12 J. Owens et al, PRD 87 (2013) 094012

Upgraded JLab has unique capability to define the valence region

Argonne National Laboratory

Present status: Neutron to proton structure function ratio

C. D. Roberts, RJH, S. Schmidt, arXiv: 1308.1236; RJH, C. D. Roberts, RMP **82** (2010) 2991

Argonne National Laboratory

Extractions with modern deuteron wave functions

The ratio at high x has a strong dependence on deuteron structure.

J. Arrington et al, J. Phys. G 36 (2009)

C. Accardi, *et al.*, PRD81 (2010) CJ J. Arrington et al, PRL **108** (2012) J. Owens et al, PRD **87** (2013) CJ12 PDF's More p/d data at JLab 12 GeV E12-10-008 - J. Arrington, A. Daniel, D. Gaskell

The Spectator Tagging Approach: An Effective Free Neutron Target from Deuterium....

L.L. Frankfurt and M.I. Strikman, Phys. Rep. 76, 217 (1981)

C. Ciofi degli Atti and S. Simula, Phys. Lett. B319, 23 (1993); Few-Body Systems 18, 55 (1995)

S. Simula, Phys. Lett. B387, 245 (1996); Few-Body Systems Suppl. 9, 466 (1995)

W. Melnitchouk, M. Sargsian and M.I. Strikman, Z. Phys. A359, 99 (1997)

BoNuS Experiment at JLab

Tag low momentum, backward angle spectator proton in deuterium = electron scattering from a free *Neutron* target

n Multiplier) Use GEM-based radial TPC in JLab CLAS spectrometer

Measure neutron structure function F_2 to study quark structure of the nucleon at large x

Results from BoNuS

 $P_{spectator} < 100 \text{ MeV/c},$ $\theta_{spectator} < 90$

Textbook physics :) Plot is in the new edition of <u>Gauge Theories</u> of the Strong, Weak, and <u>Electromagnetic Interactions</u> (Chris Quigg)

Still not quite large enough x.....

BoNuS: 12 GeV JLab experiment projections

Projected BoNuS12 uncertainties statistical + systematic CJ 2011 pdfs - with

nuclear uncertainty

JLab E12-06-113, S. Bueltmann, M. Christy, C. Keppel, et al.

Adapted from C. Keppel

Argonne National Laboratory

Spectator tagging at an EIC

EIC has > 100 x luminosity of HERA, polarized e and light ions, nuclear beams

Thanks to A. Accardi, R. Ent, C. Keppel

Nuclear Physicists' Approach to F_{2n}

- Problem:
 - The deuteron experiments present extraction complications.
- Nuclear physicists' solution: Add another nucleon.
- ³H/³He ratio: minimizes nuclear physics uncertainties

I. Afnan et al, PRC 68 (2003)

DIS from A=3 nuclei

$$R(^{3}\text{He}) = \frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{p} + F_{2}^{n}}, \qquad R(^{3}\text{H}) = \frac{F_{2}^{^{3}\text{H}}}{F_{2}^{p} + 2F_{2}^{n}}$$

- Mirror symmetry of A=3 nuclei
 - Extract F₂ⁿ/F₂^p from ratio of measured ³He/³H structure functions

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

R = SUPER ratio of "EMC ratios" for ³He and ³H

- Relies only on <u>difference</u> in nuclear effects in ³H, ³He
- Calculated to within 1%
- Most systematic and theoretical uncertainties cancel

DIS from A=3 nuclei - Projected Results

E12-06-118 MARATHON: G. Petratos, J. Gomez, RJH, R. Ransome, *et al.* Scheduled for 2015 at JLab

Hall A BigBite Spectrometer

Thermo-mechanical design, B. Brajuskovic *et al*, NIM A, arXiv: 1306.6000

PVDIS Measurements - SoLID Proposed Setup

Solenoidal Large Intensity Device - 12 GeV Hall A at JLab Parity-violating DIS program on deuterium and hydrogen

$$A_{\rm PV} \approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right]$$

$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})}$$

Slide credit: S. Riordan

For high x on proton target:

$$a_1^p(x) = \left[\frac{12C_{1u}u(x) - 6C_{1d}d(x)}{4u(x) + d(x)}\right] \approx \left[\frac{1 - 0.91d(x)/u(x)}{1 + 0.25d(x)/u(x)}\right]$$

- Three JLab 12 GeV experiments:
 - CLAS12 BoNuS spectator tagging
 - BigBite DIS ³H/³He Ratio
 - SoLID PVDIS ep
- The SoLID extraction of d/u is made directly from ep DIS: no nuclear corrections

Spin Structure of the nucleon - valence region

Polarized electron scattering from a polarized nucleon

Measurements and Projections for A_1^p

JLab E12-06-109, S. Kuhn, D. Crabb, A. Deur, V. Dharmawardane, T. Forest, K. Griffioen, M. Holtrop, Y. Prok, et al.

C. D. Roberts, RJH, S. Schmidt, arXiv: 1308.1236

Measurements and Projections for A_1^n

Scheduled for 2015 at JLab

JLab E12-06-110, X. Zheng, J.-P. Chen, Z.-E. Meziani, G. Cates et al.

JLab E12-06-122, B. Wojtsekhowski, G. Cates, N. Liyanage, Z.-E. Meziani, G. Rosner, X. Zheng, et al.

Transversity and tensor charge

Quark transverse polarization in a transversely polarized nucleon:

$$h_{1T} =$$
 $h_{1T} =$ h_{1

- Can be probed in Semi-Inclusive DIS, Drell-Yan processes.
- Quark-antiquark sea does not contribute.
- Quark and gluon transversity distributions do not mix.
- Nucleon tensor charge can be extracted from h_1 .
- Tensor charges are important for calculating nucleon EDMs.

Tensor Charge: Intrinsic property, like axial or vector charge

vector charge axial charge tensor charge $\langle |\gamma^{\mu}| \rangle \qquad \langle |\gamma^{\mu}\gamma_{5}| \rangle \qquad \langle |\sigma^{\mu\nu}\gamma_{5}| \rangle$ $\int dx(q-\bar{q}) \qquad \int dx(\Delta q + \Delta \bar{q}) \qquad \int dx(\Delta_T q - \Delta_T \bar{q})$

Transversity Projected Data -12 GeV JLab

JLab E12-11-111: H. Avakian, F. Klein, M. Aghasyan, K. Joo, M. Contalbrigo, et al. JLab E12-11-108: H. Gao, K. Allada, J.-P. Chen, X. Li, Z.-E Meziani, et al. JLab E12-10-006: H. Gao, J.-P. Chen, X. Jiang, J.-C. Peng, X Qian et al. JLab E12-09-018: G. Cates, E. Cisbani, G. Franklin, A. Puckett, B. Wojtsekhowski, et al.

Tensor Charge: $\sigma_{\mu\nu}$ current $\delta q = \int_0^1 dx \left(h_1^q(x) - h_1^{\bar{q}}(x) \right)$

- 1. JLab 12 GeV Projection (Prokudin)
- 2. Anselmino *et al.*, <u>PRD87 (2013) 094019</u>
- 3. Pitschmann *et al.* (DSE) (2013) [including axial-vector diquarks *but* contact interaction]
- 4. Hecht *et al.* (DSE), <u>PRC64 (2001) 025204 [only</u> scalar diquarks]
- 5. Cloët et al., PLB659 (2008) 214
- 6. Pasquini et al., PRD76 (2007) 034020
- 7. Wakamatsu, PLB653 (2007) 398
- 8. Gockeler *et al.*, <u>PLB627 (2005) 113</u>
- 9. Gamberg et al., PRL 87 (2001) 242001
- 10. He et al., PRD52 (1995) 2960
- 11. Bacchetta et al., JHEP 1303 (2013) 119

Craig Roberts: Questions and Answers for Hadron Physics (65p)

Morelia IV: 6-10 May

23

Concluding statement

Understanding hadrons will be one of science' greatest achievements

- Understanding the nucleon at high x is essential
 - Valence region defines the hadron
 - Test models of the nucleon
 - Descriptions of DIS in nuclei
 - QCD effects in high energy experiments
- New 21st century tools have positioned us well for the next decade
- We are camped on one of the most interesting frontiers in science

Main injector at FNAL - 120 GeV protons

Fermilab Today

Feature

SeaQuest dives into a mysterious sea of particles

Scientists hope the SeaQuest detector will begin taking data in a couple of weeks. *Photo: Reidar Hahn*

D. Geesaman, P. Reimer, et al.

Longer term: Polarized FNAL, J-PARC at 50 GeV

FNAL E906

Argonne National Laboratory

Drell-Yan measurement of anti-quark distributions

Transverse Momentum Distributions: The Sivers effect

- NSAC Milestone HP13 (2015) "Test unique QCD predictions for relations between singletransverse spin phenomena in p-p scattering and those observed in deep-inelastic scattering."
- COMPASS-II, RHIC-spin, polarized FNAL

Polarized Drell-Yan and W production (2014+)

Spin dependent PDF predictions at large-x

$$\begin{vmatrix} p \uparrow \rangle = \frac{1}{\sqrt{2}} \begin{vmatrix} u \uparrow (ud) \\ s=0 \end{vmatrix} + \frac{1}{\sqrt{18}} \begin{vmatrix} u \uparrow (ud) \\ s=1 \end{vmatrix} - \frac{1}{3} \begin{vmatrix} u \downarrow (ud) \\ s=1 \end{vmatrix}$$
$$- \frac{1}{3} \begin{vmatrix} d \uparrow (uu) \\ s=1 \end{vmatrix} - \frac{\sqrt{2}}{3} \begin{vmatrix} d \downarrow (uu) \\ s=1 \end{vmatrix}$$

Nucleon Model	F_2^n/F_2^p	d/u	∆u/u	∆d/d	A ₁ n	A ₁ p
SU(6)	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark	1/4	0	1	-1/3	1	1
DSE contact interaction	0.41	0.18	0.88	-1/3	0.38	0.83
DSE realistic interaction	0.49	0.28	0.65	-0.26	0.17	0.59
pQCD	3/7	1/5	1	1	1	1

Craig Roberts: Nucleon spin structure at large-x

<u>Δd/d</u> & <u>Δu/u</u>

30

Is there a flavor asymmetry in the sea quark helicity distributions?

Plot credit: K. Hafidi

W production expected from RHIC runs 12+13

B. Jacak, N. Xu, RHIC PAC 2012 http://www.bnl.gov/npp/pac0612.asp

Thanks to E. Aschenaur

Argonne National Laboratory

BONUS in CLAS (Hall B at Jefferson Lab)

rTPC inside Solenoid inside CEBAF Large Acceptance Spectrometer (CLAS)

Track scattered e⁻ in CLAS

Locate e⁻ interaction point in target.

Electron tracked in CLAS provides trigger to BONUS radial TPC

Link p_{spectator} with electron vertex.

CLAS is made of Drift Chambers, Time of Flight Scintillators, Cerenkov counters and Electromagnetic Calorimeters for tracking, momentum determination, and Particle ID