Recent theory issues in SM Higgs results Frank Petriello

International Symposium on Multi-particle Dynamics September 16, 2013

Outline

- •A survey of Higgs measurements at the LHC
- •The role of theory in unraveling the origin of EWSB
- •Two issues for the future LHC program: theory predictions for exclusive jet bins and second-generation couplings
 - Theory for jet vetoes in the WW channel
 - •Higgs+jet @NNLO
 - Measuring the Hccbar coupling at a luminosity-upgraded LHC

The Higgs discovery

•We've come a long way since July 2012:

The Higgs discovery

•We've come a long way since July 2012:

Mass measurement

Consistent with the global EW fit without the LHC measurement to better than 2σ
Measurement errors are sub-GeV, and are

becoming systematic-dominated

Spin-parity analysis

Kinematic distributions in γγ,
 ZZ, and WW final states prefer a
 0⁺ state

•ATLAS example: 0⁻, 1⁺, 1⁻, and 2⁺ excluded at or above 97.8% C.L.

Coupling measurement

Summary of measured properties

``If it walks like a duck and talks like a duck...''

Summary of measured properties

``If it walks like a duck and talks like a duck...'

The documentation frontier (C. Brock)

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	15 Jan 2012	⁴ ~830 pages	
Handbook of LHC Higgs cross sections:	Handbook of LHC Higgs cross sections: 1 2 2	Image: Section state Image: Section state Image: Section state Image: Section state	:
1. Inclusive observables	Report of the LHC Higgs Cross Section Working Group	C12 C12 C12 C12 C12 C12 C12 C12	roup
Report of the LHC Higgs Cross Section Working Group	arXiv:1	arXi	

Uncertainties in inclusive cross-sections

Dittmaier and Schumacher (2012)

		LHC $@\sqrt{s} = 7 \text{TeV}$				LHC @ $\sqrt{s} = 14 \text{TeV}$			
		uncertainties		corrections		uncertainties		corrections	
	$M_{\rm H}[{\rm GeV}]$	THU	PU	QCD	EW	THU	PU	QCD	EW
ggF	< 500	6-10%	8-10%	$\gtrsim 100\%$	5%	6-14%	7%	$\gtrsim 100\%$	5%
VBF	< 500	1%	2-7%	5%	5%	1%	3 - 4%	5%	5%
HW	< 200	1%	3-4%	30%	$5{-}10\%$	1%	3 - 4%	30%	5 - 10%
ΗZ	< 200	1 - 2%	3-4%	40%	5%	2-4%	3 - 4%	45%	5%
ttH	< 200	10%	9%	5%	?	10%	9%	15 - 20%	?

And yet...

Sharpening our image

 Systematic errors already approaching statistical ones; will overtake with 14 TeV data

•Systematic error shown is the combination of experimental and theoretical systematics; theory is already the dominant systematic error

•A particular issue is the division into bins of exclusive jet multiplicity

Source	$N_{\text{jet}} = 0$	$N_{\text{jet}} = 1$	$N_{\text{jet}} \ge 2$		
Theoretical uncertainties on total signal	yield (%)				
QCD scale for ggF, $N_{jet} \ge 0$	+13	-	-		
QCD scale for ggF, $N_{iet} \ge 1$	+10	-27	-		
QCD scale for ggF, $N_{iet} \ge 2$	-	-15	+4		
QCD scale for ggF, $N_{jet} \ge 3$	-	-	+4		
Parton shower and underlying event	+3	-10	±5		
QCD scale (acceptance)	+4	+4	±3		
Experimental uncertainties on total signal yield (%)					
Jet energy scale and resolution	5	2	б		
Uncertainties on total background yield (%)					
WW transfer factors (theory)	±1	±2	±4		
Jet energy scale and resolution	2	3	7		
b-tagging efficiency	-	+7	+2		
f_{recoil} efficiency	±4	±2	-		

The lost generation

•Extremely difficult to access second-generation couplings at the LHC

- •Only possible with high luminosity; only muon final-state considered by ATLAS/CMS so far
- •Is an e⁺e⁻ Higgs factory needed to access 2nd-generation quark couplings?

Exclusive jet bins

•Required experimentally in the WW channel due to the background composition

•Continuum WW production in the 0-jet bins; both WW and ttbar in the 1jet bin; ttbar in the 2-jet bin

•Need different cuts as a function of jet multiplicity

- •Typical jet-p⊤ choices: 25-30 GeV
- •Similar divisions used in some TT analyses

Why are jet vetoes dangerous?

•Imposing a jet veto leads to an interesting two-scale problem in QFT. Illustrate with simple example of $e^+e^- \rightarrow jets$

Infrared safety: must sum both virtual and real corrections

Virtual corrections: $-1/\epsilon_{IR}^2$

Real corrections: $1/\epsilon_{IR}^2 - a \times In^2(Q/p_{T,veto})$

Incomplete cancellation of IR divergences in presence of final state restrictions gives logarithms of the restricted kinematic variable
Relevant term for gluon-fusion Higgs searches:

 $2C_A(\alpha_S/\pi)\ln^2(M_H/p_{T,veto}) \sim 1/2 \Rightarrow potentially a large correction$ • $\alpha_S^n \ln^{2n}(M_H/p_{T,veto})$ appears at each order *n* in perturbation theory

The structure of the Higgs cross section

•Can identify three kinematic regions for a QCD prediction when a (dimensionless) variable T is restricted •Peak region: $\alpha_{S} \ln^{2}(\tau_{cut}) \gg I$; perturbative expansion dominated by logarithms, predict using resummation •Tail region: $\alpha_{S} \ln^{2}(\tau_{cut}) \ll I$; logarithms not large, predict using standard fixedorder perturbation theory •Transition region: $\alpha_{S} \ln^{2}(\tau_{cut}) \lesssim I$; need

progress on both resummation and

fixed-order
Higgs production at the LHC is in the most-difficult transition region; must consider both resummation and fixed-order results to describe this process
Nature (or at least experimentalists) is unkind...

Zero-jet resummation

- Begin in the zero-jet bin. Current status with anti- k_T algorithm:
 - * Banfi, Monni, Salam, Zanderighi: NNLL+NNLO 1203.5573, 1206.4998
 - * Becher, Neubert NNLL+NNLO 1205.3806, partial N³LL+NNLO 1307.0025
 - Stewart, Tackmann, Walsh, Zuberi NNLL'+NNLO 1307.1808

NNLL'+NNLO resummation

green: NLL_{p_T} blue: $NLL'_{p_T} + NLO$ orange: $NNLL'_{p_T} + NNLO$ •Uses soft-collinear effective theory

Significant improvement in prediction from including higher-order resummation and fixed-order
Has not yet propagated into experimental studies

Including resummation and fixed-order uncertainties

Stewart, Tackmann, Walsh, Zuberi 1307.1808

NNLL+NNLO resummation

© Central value: scheme (a) with

$$\mu_R = \mu_F = Q = M/2$$

 $\bigcirc \mu_R$ and μ_F variations

$$\frac{M}{4} \le \mu_R, \mu_F \le M \qquad \frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2$$

Resummation scale (Q) variation i.e.

$$\frac{\ln \frac{M}{p_{t,veto}} \to \ln \frac{Q}{p_{t,veto}}}{\frac{M}{4} \le Q \le M \qquad \mu_{R,F} = M/2$$

Scheme (b) and (c) with

$$\mu_R = \mu_F = Q = M/2$$

 \bigcirc Total uncertainty \longleftrightarrow envelope

Banfi, Monni, Salam, Zanderighi 1206.4998

•Very different theoretical approach, but similar results for uncertainty; reduced error estimates coming from the resummation program are robust

One-jet resummation

Two relevant regions of jet pT: pT~mH>>pT,veto, mH>>pT~PT,veto
 Currently can resum the first region at NLL'+NLO X. Liu, FP 1210.1906, 1303.4405

•Comprises roughly 30% of the event rate at the LHC, but roughly 50% of the error

•An improved treatment of this region can significantly reduce relevant errors in LHC analyses

Numerical results for the one-jet bin

•Integrate over entire p_T range used in the ATLAS measurement

$m_H ~({\rm GeV})$	$p_T^{veto}~({\rm GeV})$	$\sigma_{\rm NLO} ~({\rm pb})$	$\sigma_{\rm NLL'+NLO} \ (pb)$	$f_{ m NLO}^{1j}$	$f_{\rm NLL'+NLO}^{1j}$
124	25	$5.92^{+35\%}_{-46\%}$	$5.62^{+29\%}_{-30\%}$	$0.299^{+38\%}_{-49\%}$	$0.283^{+33\%}_{-34\%}$
125	25	$5.85^{+34\%}_{-46\%}$	$5.55^{+29\%}_{-30\%}$	$0.300^{+37\%}_{-49\%}$	$0.284^{+33\%}_{-33\%}$
126	25	$5.75^{+35\%}_{-46\%}$	$5.47^{+30\%}_{-30\%}$	$0.300^{+38\%}_{-49\%}$	$0.284^{+34\%}_{-33\%}$
124	30	$5.25^{+31\%}_{-41\%}$	$4.83^{+29\%}_{-29\%}$	$0.265^{+35\%}_{-43\%}$	$0.244^{+33\%}_{-33\%}$
125	30	$5.19^{+32\%}_{-41\%}$	$4.77^{+30\%}_{-29\%}$	$0.266^{+35\%}_{-43\%}$	$0.244^{+33\%}_{-33\%}$
126	30	$5.12^{+32\%}_{-41\%}$	$4.72^{+30\%}_{-29\%}$	$0.266^{+35\%}_{-43\%}$	$0.246^{+33\%}_{-32\%}$

 Large uncertainty from the high-p⊤ region makes this resummation very effective in reducing errors in the one-jet bin

Very conservatively (turn off resummation at p_{T,J}=m_H/2), error on I-jet bin result is decreased by 25% relative to fixed-order

 Has not yet propagated into the experimental studies

X. Liu, FP 1210.1906, 1303.4405

Higgs plus one-jet @NNLO

Higgs plus zero-jets known in fixed-order through NNLO
Until recently, Higgs plus one-jet known only through NLO
The following ingredients are needed for H+I-jet @NNLO:

• All ingredients were available, some even for a while; what prevented us from having this calculation done before now?

• IR singularities cancel in the sum of real and virtual corrections and mass factorization counterterms but only after phase space integration for real radiation

• A generic procedure to extract IR singularities from RR and RV before phase-space integration was unknown until very recently

NNLO QCD at the LHC

• After more than a decade of research we finally know how to generically handle NNLO QCD corrections to processes with both colored initial and final states

NNLO QCD at the LHC

• After more than a decade of research we finally know how to generically handle NNLO QCD corrections to processes with both colored initial and final states

Singularity structure of H+jet

 Complicated singularity structure, in particular three collinear directions:

170 different subtraction terms had to be implemented for $gg \rightarrow H g!$

Building blocks

- tree-level H+3j
- tree-level H+2j up to $O(\epsilon^2)$
- tree-level H+Ij up to O(ε)
- one-loop H+2j (Badger et al (2011))
- one-loop H+Ij up to $O(\epsilon^2)$
- two-loop H+Ij (Gehrmann et al. (2011))
- renormalization, collinear subtraction

Since the amplitudes have to be evaluated near singular configurations, numerical stability of all the above amplitudes is very important

Numerical results (gg only)

- Partonic cross section for gg → Hj @ LO, NLO, NNLO
- Realistic jet algorithm, kT with R=0.5, pT > 30 GeV
- Hadronic cross-section pp \rightarrow Hj using latest NNPDF sets
- Scale variation in the range m_H/2 < μ < 2 m_H, m_H = 125 GeV

Numerical results (gg only)

Significantly reduced scale dependence O(4%)

 $\sigma_{NLO}/\sigma_{LO} = 1.6$ $\sigma_{NNLO}/\sigma_{NLO} = 1.3$ Large K-factor

Numerical results (gg only)

gg-channel is the dominant one for phenomenological studies: at NLO gg (70%), qg(30%)
quark channels necessary for achieving the relevant precision: ongoing work

Measuring the Hcc coupling

•Can we measure second-generation quark couplings at the LHC? •Recent result: it may be possible to measure the hcc coupling at a highluminosity LHC, using $h \rightarrow J/\Psi + \gamma$ Bodwin, FP, Stoynev, Velasco 1306.5770

previously considered 7 direct production, which is sensitive to Hcc coupling, is small

•Expect ~50 events after reconstruction with 3 ab⁻¹; very small theory errors

- •±20-30% coupling measurement in SM possible
- •Very sensitive to BSM deviations!
- •Also have $h \rightarrow \Upsilon(IS) + \gamma$ decay mode; sensitive to sign of hbb coupling, unlike other hbb measurements

newly identified indirect

production is larger;

Conclusions

•Theory errors are beginning to limit our understanding of the underlying theory describing the Higgs. This will become more urgent with the increased data from a 14 TeV run.

Progress needed on two fronts to understand Higgs+jets

- •New resummations at NNLL'+NNLO (H+0-jets) and NLL'+NLO (H+1-jet) will improve predictions in the WW channel
- Initial results available for H+I-jet @NNLO
- •Notoriously difficult to measure 2nd-generation couplings at the LHC. New results indicate $H \rightarrow J/\Psi + \gamma$ might provide access to the Hccbar coupling.
- •Looking forward to the 14 TeV data!