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Introduction

Signatures of sQGP

Main signatures of sQGP in ultra-relativistic A+A collisions:

Collective flow

Jet quenching

Flow manifests itself in harmonic components in the momentum
spectra (vn), in correlation data (ridges), in mass hierarchy of pT
spectra and vn of identified particles, in certain features of
interferometry (femtoscopy), ...

Ridges found experimentally at the LHC in small systems,
p+Pb and p+p (high-multiplicity events)

Large elliptic and triangular flow measured in p+Pb

Mass hierarchy recently found in p+A
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Collectivity in small systems?

Main questions:

Are the central p-Pb collisions collective?

What is the nature of the initial state and correlations therein?
What are the limits/conditions on applicability of hydrodynamics?

Other analyses of collectivity in small systems:

Romatschke, Luzum, arXiv:0901.4588, Prasad et al., arXiv:0910.4844,
Bozek, arXiv:0911.2393, Werner et al., arXiv:1010.0400,
Deng, Xu, Greiner, arXiv:1112.0470, Yan et al., arXiv: 0912.3342,
Bozek, arXiv:1112.0912 Shuryak, Zahed, arXiv:1301.4470,
Bzdak et al.,arXiv:1304.3403, Qin, Müller, arXiv:1306.3439,
Werner et al., arXiv:1307.4379
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3-stage approach

3-stage approach

Our three-phase approach: initial → hydro → statistical
hadronization (successful in description of A+A collisions)

Initial phase - Glauber model

Hydrodynamics - 3+1 D viscous event-by-event

Statistical hadronization
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The transverse size in central p+Pb
A typical transverse-plane configuration of the participant nucleons in a p+Pb
collision generated with GLISSANDO
5% of collisions have more than 18 participants, rms ∼ 1.5 fm – quite large!
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Snapshot of peripheral Pb+Pb

5% most central values of Nw in p-Pb fall between the 60-70%
and 70-80% centrality class in Pb+Pb
Pb+Pb: c=60-70% ≡ 22 ≤ Nw ≤ 40, c=70-80% ≡ 11 ≤ Nw ≤ 21
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in Pb+Pb somewhat larger size than in p+Pb (all for Nw = 18)



Collective dynamics in p-Pb

3-stage approach

Smearing

Gaussian smearing with width 0.4 fm (physical effect)

two variants: standard compact
(sources at centers of participants) (sources at centers-of-mass of pairs)

Such transverse entropy profiles are fed into e-by-e hydro as initial
conditions
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3-stage approach

Size in p+Pb vs Pb+Pb

fixed Nw = 18

p+Pb compact

p+Pb standard

Pb+Pb
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smaller size in p+Pb → larger entropy density → more rapid
expansion

All in all, initial conditions in most central p+Pb not very far from
peripheral Pb+Pb
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Hydrodynamics [Bożek 2011]

3+1 D viscous event-by-event hydrodynamics (viscous corrections
essential due to large gradients)

τinit = 0.6 fm/c, η/s = 0.08 (shear), ζ/s = 0.04 (bulk)

freezeout at Tf = 150 MeV

average initial temperature in the center of the fireball
Ti = 242 MeV (< R2 >1/2= 1.5 fm), or
319 MeV (< R2 >1/2= 0.9 fm) – adjusted to fit multiplicity

realistic equation of state (lattice + hadron gas [Chojnacki &
Florkowski 2007]), viscosity necessary for small systems

lattice spacing of 0.15 fm (thousands of CPU hours)
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< R2 >1/2= 1.5 fm < R2 >1/2= 0.9 fm
pPb 5020GeV Npart=19
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isotherms at freeze-out Tf = 150 MeV for two sections in the
transverse plane
evolution lasts about 4 fm/c - shorter but more rapid than in A+A
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3-stage approach

Statistical Hadronization

Statistical hadronization via Frye-Cooper formula + resonance
decays (THERMINATOR)
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Ridge

Factorization of the transverse and longitudinal

distributions

alignment of F and B event planes (can be checked experimentally)

collimation of flow at distant longitudinal separations → ridges!
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Surfers - the near-side ridge
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Ridge

Definition of the 2D correlation function

C(∆η,∆φ) =
Npairs

phys
(∆η,∆φ)

Npairs
mixed

(∆η)
= S(∆η,∆φ)

B(∆η,∆φ)

(more convenient than the “per-trigger” correlations)
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Ridge in p-Pb, ATLAS
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Ridge

Projection on 2 ≤ |∆η| ≤ 5, ATLAS

Y (∆φ) =

∫
B(∆φ)d(∆φ)

N
C(∆φ)− bZYAM

The near-side ridge from our model:
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[CGC: Dusling, Venugopalan, arXiv:1210.3890, 1211.3701, 1302.7018]
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Ridge in p-Pb
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Flow

Flow from correlations (two-particle cumulants, η gap)

vn{2, |∆η| > 2GeV}
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v2 vs CMS
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Flow

v3 vs CMS
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v3 too large for peripheral collisions → limit of validity of the model
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LHC: v2 vs ATLAS
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Flow

Digression: eccentricity → flow
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larger fluctuations in the initial distribution → larger flow
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Flow

v2, v3 vs pT
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Identified particles

Identified spectra

Linear superposition not enough!

[Bzdak, Skokov, arXiv:1306.5442: Wounded Nucleon Model with experimental

pp data at 7 TeV]
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Identified particles

Identified 〈pT 〉
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Identified particles

Identified v2
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Identified particles

Identified v3
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Resonance decays affect the mass ordering!
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Interferometry

HBT radii
Interferometric radii due to Bose-Einstein correlations - measure of the size of

the system at freeze-out
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Conclusions
Is there collectivity in small systems?

→ collective dynamics is compatible with high-multiplicity LHC
soft data for p-Pb

Large v2 and v3 coefficients measured in p-Pb reproduced,
including the pT dependence

Model 2D correlations exhibit the two ridges, in particular the
near-side ridge (hydro → “surfers”) [flow ≡ near-side ridge!]

Mass ordering in 〈pT 〉 and flow coefficients reproduced

Model predictions for the interferometric radii for p+Pb are
closer to the A+A line, farther from the p+p line - way to
distinguish

Numerous effects should still be incorporated (jets,
core-corona, ...), more important for the lower-multiplicity
events
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