Heavy Flavor Production at RHIC

Zhenyu Ye @ UIC@CCNU XLIII International Symposium on Multiparticle Dynamics ANL&IIT, Chicago, 9/15-9/20, 2013

Outline

- Introduction
- Recent HF Results from RHIC
 - Open Heavy Flavor
 - Quarkonia
- Looking into the **HF** Future at RHIC
- Conclusion

Why Heavy Flavor?

- HF quarks are produced primarily in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U, ...
 - How does a parton lose its energy in the medium? radiative and/or elastic scattering? $\Delta E_a > \Delta E_a > \Delta E_c > \Delta E_b$?
 - How does the QGP thermalize?
 HF elliptic flow at low p_T
 - Properties of the QGP dependent on system size, energy

Why Heavy Flavor?

- HF quarks are produced primarily in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U, ...
 - How does a parton lose its energy in the medium? radiative and/or elastic scattering? $\Delta E_a > \Delta E_a > \Delta E_c > \Delta E_b$?
 - How does the QGP thermalize?
 HF elliptic flow at low p_T
 - Properties of the QGP dependent on system size, energy
- p+p
 - Test of pQCD and reference for studies of the QGP
- p+Au, d+Au
 - Cold Nuclear Matter effects (shadowing, CGC, Cronin effect, ...)

Relativistic Heavy Ion Collider

Outline

- Introduction
- Recent HF Results from RHIC
 - Open Heavy Flavor
 - Quarkonia
- Looking into the Future
- Conclusion

Open Heavy Flavor Production

Semi-leptonic channel:

- Single e[±], µ[±] with background subtraction estimated from MC+data
- Larger branching ratio; can trigger online on high p_T charged leptons
- No direct access to the kinematics of the original charm hadrons; Contribution from both charm and bottom

Hadronic channel:

- Fully reconstructed charm hadrons with background estimated from data
- Smaller branching ratio; no direct trigger online; large background contribution w/o good vertex measurement
- Direct reconstruction of kinematics of original charm hadrons

Open Charm Production - pp

Open Charm Production - pp

Measurements of inclusive charm production cross-section from STAR and PHENIX consistent with NLO-NLL calculation within uncertainties.

Open Bottom Production - pp

B->e and D->e extracted from e-h correlation and consistent with FONLL.

Total charm production scales with the number of binary collisions at RHIC

Suppression at high p_T in central collisions is similar to that of pions.

Models with light quarks coalescence with charm describe low pT bump. But could it be due to Cronin effect + suppression at high pT?

Need better precision measurements to further constrain models.

Significant non-zero NPE v2 at low pT: is it from charm quark flow and/or coalescence with light quark? Precise D⁰ v2 measurements will help.

Enhancement at Au-direction – antishadowing + Cronin effects? Indication of a global trend of R_{AA} vs N_{coll} – underlying physics mechanism?

Outline

- Introduction
- Recent HF Results from RHIC
 - Open Heavy Flavor
 - Quarkonia
- Looking into the Future
- Conclusion

Quarkonia

Quarkonia can be used as a thermometer for the QGP:

• color screening as a function of QGP temperature

but there are other effects as well:

C

• Feed-down from other states;

С

- CNM: shadowing, nuclear absorption
- HNM: regeneration, dissociation

A. Mocsy, EPJC 61 (2009) 705

ISMD2013, Z.Ye

c) gluon

1.0

0.5

 10^{-5}

 $S_{p}^{g}(x)$

Charmonium – J/ψ

Models including color screening and regeneration are consistent with data. The energy dependences of the two effects largely cancel out.

Charmonium – J/ψ

 J/ψ v2 consistent with 0 at pT>2 GeV

 \rightarrow J/ ψ is not dominantly produced by coalescence from thermalized c and cbar quarks

Bottomium – Y(1S+2S+3S)

New p+p reference results.

Bottomium – Y(1S+2S+3S)

- Hint of suppression vs N_{part}
- Dynamical models with fireball expansion and feed-down
 - Strickland et al., NP A 879 (2012) 25
 - anisotropic Hydrodynamics
 - Assumes:
 - T₀ range 428 442 MeV
 - $1/4\pi < \eta/S < 3/4\pi$
 - Rapp et al., EPJ A 48 (2012) 72
 - Kinetic theory + fireball.
 - T₀ = 330 MeV
 - "Weak Binding" (shown)
 - Binding energy changes with T
 - Bound state mass : constant
 - In-medium open-bottom threshold is reduced
 - Motivated by Lattice QCD

Outline

- Introduction
- Recent HF Results from RHIC
 - Open Heavy Flavor
 - Quarkonia
- Looking into the Future
- Conclusion

Looking into the Future

STAR Heavy Flavor Tracker

STAR Muon Telescope Detector

PHENIX VTX and FVTX

An extended AuAu run in 2014 with PHENIX VTX and FVTX STAR HFT and MTD taking data for heavy flavor physics

Looking into the Future

Conclusion

- Strong suppression observed for D₀ and NPE in 200 GeV AuAu collisions but not for NPE at 62 GeV.
- Significant v2 observed for NPE in 200 GeV AuAu collisions.
- Weak dependence of J/psi suppression on beam energy can be attributed to cancellation of suppression and regeneration effects.
- Y suppression in 200 GeV AuAu collisions consistent with models with complete Y(2S) and Y(3S) suppression.
- Both STAR and PHENIX will have new detectors take data starting in 2014 for HF physics: precise HF measurements with more definitive information to address how heavy flavor quarks interact with the hot nuclear medium, and the medium properties.

Open Bottom Production - pp

B->e and D->e extracted from e-h correlation and consistent with FONLL.

Open Bottom Production - AuAu

