

Strangeness Probes of QCD Matter from RHIC Beam Energy Scan

Huan Zhong Huang 黄焕中

Department of Physics and Astronomy University of California at Los Angeles

Sept 15-20, 2013 XLIII ISMD @ Chicago

Very Exciting Scientific Program and Detector Upgrades STAR for the coming decade **Partonic structure**

Hot QCD Matter

- 1: Properties of the sQGP
- 2: Mechanism of energy loss: weak or strong coupling?
- 3: Is there a critical point, and if so, where?
- 4: Novel symmetry properties
- 5: Exotic particles

9/18/2013

- 6: Spin structure of the nucleon
- 7: How to go beyond leading twist and collinear factorization?

8: What are the properties of cold nuclear matter?

Outline

RHIC Beam Energy Scan Program

Strange Baryon, Coalescence and Parton distribution from Bulk Matter

Test Thermal Statistical Model

Year	En (GeV)	# Event (10 ⁶)
2010	39	130
2010	11.5	12
2010	7.7	5
2011	27	70
2011	19.6	36
2014	15	

RHIC can deliver low energy beams STAR has almost uniform acceptance independent of beam energy Luminosity/Data-taking efficiency !!

Signal Reconstruction

Mid-Rapidity Hyperon Yield

9/18/2013

Increased Hyperon over Ks ratios

The formation probabilities of baryons and mesons depend on the environment – local parton density

9/18/2013

STAR

quarks

Strange quark analysis from Ω and ϕ using Coalescence Framework

10⁻

3p.

Ω(sss) and φ(ss̄) formed at chemical freezeout from coalescence of 3 s quarks and s-sbar pairs. Assuming sudden coalescence of s quarks of approximately equal pT and the same shape of pT distributions for s and sbar 10⁻³

GeV (0-5%)

GeV (0-10%)

200

- The s quark pT distribution at freeze-out ~ Ω(3p_T)/φ(2p_T)
- IS there a difference in partonic dynamics between 11 and 20 GeV? 9/18/2013 NEED more statistics (BES II) and a 15 GeV run !! 10

Coalescence Picture !

Independent Empirical Check on Coalescence – if $s(p_T) \sim \Omega(3p_T)/\phi(2p_T)$, then $\phi(2p_T)/s(p_T)$ is also $s(p_T)$ are these functions of similar shape?

NEED More Data at 11.5 GeV !!

Ratio (B/B)

Test Thermal Statistical Model

10²

 $\sqrt{s_{_{NN}}}$ (GeV)

Central Au+Au (Pb+Pb) Collisions

Solid red: STAR BES; **Open black: STAR published; Open blue: NA49**

Do these ratios satisfy Thermal Model? Why these ratios? Feeddown corrected !

9/18/2013

10

Anti-hyperon to Hyperon Ratios

-- remarkably consistent with thermal model!

9/18/2013

13

Beam Energy Dependence

Beam Energy Dependence of μ_B/T and μ_S/T can be described by a parameterization from F.Becattini et al. Phys Rev C 73, 044905 (2006)

Road to Beam Energy Scan II

1) Need electron cooling to be more efficient !

 2) STAR TPC Inner Sector readout upgrade
-- enhance tracking and PID in η 1-1.7 region

BES II Starting 2018+

RHIC – a Dedicated QCD Facility

QCD – Fundamental Corner Stone of the Standard Model !! -Dynamics of QCD in bulk matter, vacuum structure and hadrons? Condensed Matter Physics with Underlying QCD Interactions !

We are beyond the QGP discovery phase already ! LHC -- Energy/Temperature Frontier **RHIC – New Horizons in QCD Phase Structure, Vacuum Excitation, Initial State Color Charge Dynamics,** Hadron Structure and Exotics **RHIC Beam Energy Scan Program provides unique** experimental opportunity to study the transition in dynamics from parton degree of freedom to hadronic matter and to search for possible critical point in QCD phase diagram ! BES II 2018+