Low-energy exclusive $e^+e^- \rightarrow$ hadrons cross sections and inclusive production of charged particles with Babar

J. William Gary

University of California, Riverside for the Babar Collaboration

ISMD 2013, Chicago, September 16-20, 2013

Babar experiment

- PEP-II rings: asymmetric e⁺e⁻ collider @ SLAC
- Collected data 1999-2008; data analysis still very active (~30 pubs. In 2013)

- CPV in B decays, CKM physics ~465 x 10⁶ Y(4S) \rightarrow BB events
- ~650 x 10⁶ e⁺e⁻ \rightarrow cc events: D⁰- \overline{D}^0 mixing, charmonium states
- ~430 x 10⁶ e⁺e⁻ $\rightarrow \tau^+\tau^-$ events: lepton flavor violation
- Initial-state γ radiation (ISR) events: access to low-energy e⁺e⁻ cross sections
- Other QCD topics: <u>hadron form factors</u>, light-hadron spectroscopy, <u>inclusive</u> <u>particle production</u>

Recent "QCD" Topics from Babar

```
(I) e^+e^- \rightarrow K^+K^-(\gamma) cross section (ISR)
[PRD 88, 032013 (2013)]
```

- (II) $e^+e^- \rightarrow p\overline{p}$ cross section (ISR, tagged γ) [PRD 87, 092005 (2013)]
- (III) e⁺e⁻ → pp̄ cross section (ISR, untagged γ)
 [arXiv:1308.1795, submitted to PRD; preliminary]

(IV) $e^+e^- \rightarrow K_s K_L(\pi^+\pi^-)$, $K_s K_s \pi^+\pi^-$, $K_s K_s K^+ K^-$ cross sections (ISR) [preliminary]

(V) Inclusive charged π, K, and p production at 10.54 GeV [PRD 88, 032011 (2013)]

[PRD 88, 032013 (2013)]

Babar: broad ISR program for a precise low-energy measurement of

 $\mathsf{R} = \sigma \text{ (e}^+\text{e}^- \rightarrow \text{hadrons)} / \sigma \text{ (e}^+\text{e}^- \rightarrow \mu^+\mu^-)$

 \rightarrow Now adding K⁺K⁻, K_sK_L, K_sK_{S/L} $\pi^{+}\pi^{-}$, K_sK_sK⁺K⁻ channels and updating pp

- Measure σ (e⁺e⁻ \rightarrow X) versus m_{y*} = m_X = E_{CM} = Vs'
- Babar covers the complete set of significant exclusive channels
- Sum of exclusive channels more precise than an "inclusive" γ_{ISR} +hadrons measurement due to worse energy resolution for photons

$R = \sigma (e^+e^- \rightarrow hadrons) / \sigma (e^+e^- \rightarrow \mu^+\mu^-)$ at low E_{CM} :

- Needed for calculation of hadronic corrections to vacuum polarization
- Uncertainties due to vacuum polarization a limiting factor in precise comparison between data and theory for muon magnetic anomaly a_u

$$\begin{array}{c} & & \vec{\mu}_{\mu} = \frac{-g_{\mu}e}{2m_{\mu}c}\vec{S} \qquad a_{\mu} = \frac{g_{\mu}-2}{2} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\$$

 a_{μ}^{had} can't be calculated perturbatively:

→ Use measured low- $E_{CM} \xrightarrow{e^+e^-}$ → hadrons cross section & dispersion relations to calculate VP contribution to a_{μ}^{had}

- Higher-order radiation K⁺K⁻γ events included so that the efficiency can be controlled to the 10⁻³ level
- Luminosity determined from $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events in the same sample
 - → reduced systematic uncertainties (no reliance on theoretical radiator function, which introduces uncertainties due to missing higher orders); no reliance on absolute luminosity measurement

Data sample: 232 fb⁻¹ at 10.54 GeV

- 2 tracks, opposite charge, p > 1 GeV, identified as kaons (dE/dx and DIRC)
- ≥ 1 photon with E* > 3 GeV (* = CM frame)
- ISR photon = γ with highest E*

[event display courtesy of Dave Muller]

- γ_{ISR} must lie within 0.3 radians of p_{miss} vector formed from all other particles \rightarrow strong background suppression against non-ISR events
- Background (π⁺π⁻γ, μ⁺μ⁻γ, K⁺K⁻π⁰γ, etc.) < 20% in all Vs' regions (usually much less) is subtracted
- Cross section unfolded for detector resolution

Babar results

- cover large energy range
- six orders of magnitude
- more precise than previous results
 [DM1-2 = Orsay; SND, CMD, OLYA
 - = Novosibirsk low fixed-energy energy e⁺e⁻]

Impact on contribution to muon anomaly from K⁺K⁻:

 $a_{\mu}^{KK,LO} = [22.93 \pm 0.18_{stat} \pm 0.22_{syst} \pm 0.03_{VP(\phi \text{ params.})}] \times 10^{-10}$ (1.2% precision)

versus previous world average [21.63 \pm 0.27_{stat} \pm 0.68_{syst}] x 10⁻¹⁰ (3.3% precision)

Charged Kaon form factor:

- Above hadron-resonance region, data agree with shape of the QCD $\alpha_{\text{s}}(\text{s}')/\text{s}'$ prediction
- Babar confirms discrepancy for predicted normalization seen by CLEO at fixed- E_{CM} points

$e^+e^- \rightarrow p\overline{p}$ cross section

Tagged analysis: [PRD 87, 092005 (2013)] [update of PRD 73, 012005 (2006) using twice as much data and improved techniques]

Untagged analysis: [arXiv:1308.1795 ; preliminary] [greatly Improves detection efficiency and precision of measurements for $m_{00} > 3$ GeV]

$e^+e^- \rightarrow p\overline{p}$ cross section

Untagged analysis: main selection variables

- $p_T of p\overline{p} pair$ ($p_T \approx 0$ for signal events)
- Missing mass-squared M²_{miss} recoiling against pp pair (expect M²_{miss} ≈ 0 for signal events)

$e^+e^- \rightarrow p\overline{p}$ cross section

[PRD 87, 092005 (2013) and arXiv:1308.1795]

Proton form factor

0.2

0

- Confirm enhancement in the • threshold region
- Precise results over wide ٠ energy range
- Much increased precision at • high mass values from the untagged events

Bill Gary, ISMD 2013, September 20, 2013

$e^+e^- \rightarrow K_S K_L$ cross section

[preliminary (Sept. 2013)]

- Exactly one $K_s \rightarrow \pi^+\pi^-$ candidate consistent with interaction point (IP)
- No charged tracks consistent with IP

K_L detection efficiency measured using data:

• for dominant $e^+e^- \rightarrow \phi \gamma_{ISR} \rightarrow K_S K_L \gamma_{ISR}$ channel, plot recoil mass against the $K_S \gamma_{ISR}$ system

$$m_{rec}^2 = (E^+ + E^- - E_{\gamma} - E_{K_S^0})^2 - (\bar{p}^+ + \bar{p}^- - \bar{p}_{\gamma} - \bar{p}_{K_S^0})^2$$

- \rightarrow clean K_L signal, w.o. explicit K_L selection
- Apply K_L selection to this sample:
 → require an isolated EM cluster with
 - E > 0.2 GeV
 - < 0.5 rad. from expected K_L direction

→ K_L detection efficiency $\approx 48\%$ (6% lower than simulation) determined as a function of K_L energy and direction

$e^+e^- \rightarrow K_S K_L$ cross section

[preliminary (Sept. 2013)]

 $e^+e^- \rightarrow K_S K_L$ nonresonant channel $[m_{K_S K_I} = Vs' > 1.06 \text{ GeV}]$

 \rightarrow significant background from $e^+e^- \rightarrow K_S K_L(n\pi^0)$; n≥1 ISR events

- Examine all EM clusters except those assigned to the K_L and γ_{ISR} , assume they are photons
- Plot $E_{\gamma,max}$ versus $m_{\gamma\gamma}$ for all $\gamma\gamma$ pairs
- Require $E_{\gamma,max} < 0.5$ GeV in order to reduce background from $n\pi^0$ events
- Data sidebands used to evaluate and subtract residual background

$e^+e^- \rightarrow K_S K_L$ cross section

[preliminary (Sept. 2013)]

Babar data

- cover larger energy range
- are more precise than previous results

Clear evidence for the $\phi(1600)$

[≈1000 events in this region, compared to 58 for only previous measurement in this region: DM1 fixed energy e⁺e⁻ expt. (Orsay): PLB99 (1981) 261]

First measurements ever of the e⁺e⁻ \rightarrow K_SK_L $\pi^+\pi^-$, K_SK_s $\pi^+\pi^-$, K_SK_sK⁺K⁻ cross section

[preliminary (Sept. 2013)]

[PRD 88, 032011 (2013)]

- Multiplicity and momentum spectra of identified charged hadrons represent basic characteristics of multihadronic events
- Global information on the hadronization process; how it depends on hadron mass and quantum numbers
- Basic information used to tune Monte Carlo event generators
- Energy evolution provides a test of perturbative QCD
- Precise measurements at 91 GeV (LEP and SLC)
- Only previous results in 10 GeV region had been from ARGUS (1989) [Belle: charged π[±] and K[±] fragmentation functions; PRL 111 (2013) 062002]
- Babar analysis: 0.91 fb⁻¹ of off-peak (continuum) data at 10.54 GeV
 ≈ 0.2% of data sample (results dominated by systematic uncertainties)

<u>Track selection</u>: p>200 MeV, d₀<1mm, trajectory intersects DIRC

- \rightarrow good momentum resolution and PID
- → Particle ID from dE/dx and DIRC: ~90% efficient, <5% mis-ID

Event selection:

- Good vertex from ≥ 3 tracks
- Highest multiplicity vertex: d₀<5mm, z₀<5 cm
- 2nd Fox-Wolfram moment < 0.9 (event is not pencil-like)
- $5 < E_{tot} < 14 \text{ GeV}$; $|\cos\theta_{thrust}| < 0.8$

\rightarrow 2.2 x 10⁶ events, purity 95.4%

- Data control samples used to correct track-selection & particle-ID efficiencies
- Background is subtracted (main background: well understood $\tau^+\tau^-$)
- "Prompt" particles: decay products of K_s , Λ , etc., NOT included

Modified leading-logarithm approximation (MLLA):

 \rightarrow calculations to all orders in $\alpha_{\rm s}$

Local-parton-hadron duality (LPHD):

→ inclusive distributions of primary hadrons same as for partons up to normalization

MLLA+LPHD predictions: $\xi = -\ln(x_p)$ spectra:

- Gaussian within one unit of peak
- Skewed Gaussian over wider range

HadronGaussianDistorted π^{\pm} 0.92-3.270.22-3.27 K^{\pm} 0.63-2.580.34-3.05 p/\overline{p} 0.56-3.270.48-3.27

(require χ^2 probability > 0.01)

→ Data consistent with MLLA prediction, as also seen at higher energies

- hypothesis
- \rightarrow BaBar adds a high-precision low-energy data point

Peak ξ^* of the ξ = - ln (x_p) distribution:

- \rightarrow different slope for kaons due to changing flavor content?
- Decrease exponentially with hadron mass (fixed E_{CM}):

-ASS

AS-

Inclusive π^{\pm} , K[±], and p, p production

 10^{3} s = E²_{CM} (GeV²) \rightarrow but ξ^* for kaons and protons is about the same: prediction fails here (as also seen at higher energies)

10²

BaBa

2.0

1.5

 10^{4}

Summary

- Comprehensive program for σ (e⁺e⁻ \rightarrow hadrons) at low E_{CM} from the sum of exclusive channels; important for the g-2 prediction
- First Babar results on $e^+e^- \rightarrow K^+K^-$, $K_SK_L(\pi^+\pi^-)$, $K_SK_s\pi^+\pi^-$, $K_SK_sK^+K^-$, and untagged pp (first results ever for the K_L , K_S channels)
- Updated results on tagged $e^+e^- \rightarrow p\overline{p}$
- Precise measurements of π⁺, K⁺, p, p production at 10.54 GeV allow new tests of QCD scaling predictions
- Babar conclusions for MLLA+LHPD similar to those from higherenergy experiments; add a high-precision, low-energy data point

EXTRA SLIDES

Form factor expressions

$$|F_K|^2(s') = \frac{3s'}{\pi \alpha^2(0)\beta_K^3} \frac{\sigma_{KK}(s')}{C_{FS}}$$

$$eta_K = \sqrt{1 - 4m_K^2/s'}$$
 $C_{\mathrm{FS}} = 1 + rac{lpha}{\pi}\eta_K(s')$
(final-state Coulomb correction)

$$\sigma_{p\bar{p}}(M_{p\bar{p}}) = \frac{4\pi\alpha^2\beta C}{3M_{p\bar{p}}^2} \left[|G_M(M_{p\bar{p}})|^2 + \frac{2m_p^2}{M_{p\bar{p}}^2} |G_E(M_{p\bar{p}})|^2 \right]$$
$$\beta = \sqrt{1 - 4m_p^2/M_{p\bar{p}}^2}, \ C = y/(1 - e^{-y})$$
$$y = \pi\alpha(1 + \beta^2)/\beta$$

Hadronic contributions to a^{had}

1			
7	Channel	$a_{\mu}(had) (10^{-11})$	
		BABAR	world average w/o <i>BABAR</i>
	$\pi\pi(\gamma)$	$5141 \pm 22 \pm 31$	5056 ± 30
	$\pi^+\pi^-\pi^+\pi^-$	$136.4 \pm 0.3 \pm 3.6$	139.5 ± 9.0
	K^+K^-	$229.3 \pm 1.8 \pm 2.2$	$216.3 \pm 2.7 \pm 6.8$

From Frank Porter, APS 2013 meeting (UC Santa Cruz)

- Precision on $\pi^+\pi^-$ comparable with previous WA
- Precision on 4π factor 2.6 better than previous WA
- Precision on K⁺K⁻ factor 3 better than previous WA

$$\pi^+\pi^-\pi^+\pi^-$$
 PRD **85** 112009 (2012)
 $\pi\pi(\gamma)$ PRD **86** 032013 (2012)

Measured value of $a_u \sim 3.6\sigma$ larger than SM prediction

