Diffraction at the LHC

Results from TOTEM, CMS and ATLAS

Máté Csanád (for the TOTEM Collaboration) Eötvös University

ISMD 2013, Chicago September 17, 2013

Introduction

- Cross-section measurements
- Single diffraction
- Double diffraction
- Central diffraction
- Some more results
- Summary

Introduction

Non-diffr.

 $(\sim 60 \, mb)$

Elastic

(~25 mb)

Single-diffr.

(~10 mb)

 $(\sim 5 \text{ mb})$

Central-diffr.

 $(\sim 1 \text{ mb})$

Event classification

- Elastic + diffractive (colorless interaction) + non-diffractive (color exchange)
- Single diffr.: $pp \rightarrow pX/Xp$
- Double diffr.: $pp \rightarrow XY$
- Classification: rapidity gap
- Need well-placed detectors
- Also with jets: hard diffraction
- Soft diffraction:
 - Regge theory & the Pomeron
- Kinematic variables:
 - Double-diffr. Invariant mass of dissociated particles: M
 - Mom. loss of the proton:

$$\xi = \frac{\Delta p}{n} = \frac{M^2}{s}$$

Rapidity gap: $\Delta \eta = \ln(\xi)$

RP

CMS

T1/T2

RP

-5

Δη

0

0-

-10

Introduction

Forward detectors at TOTEM & CMS

 Roman Pot detects deflected protons horizontal pot Edgeless silicon detector strips II u strips || v norizontal dete Placed 147 and 220 m from IP Overlap • Few μ rad scattering angle ($|\eta|$ around 10) vertical dete lower vertical pot Momentum-transfer: $10^{-4} < |t/\text{GeV}^2| < 10$ MB/1/3 Other forward detectors NB/1/2 MB/1/1 tracks in SD & DD events HF (CMS) CRYOSTAL • HF: $3 < |\eta| < 5$ HB/1 • T1: $3.1 < |\eta| < 4.7$ • T2: $5.3 < |\eta| < 6.5$ • CASTOR: $5.2 < |\eta| < 6.6$ T1 (TOTEM) • FSC: $6 < |\eta| < 8$ T2 (TOTEM) CASTOR (CMS) **RP 147 BP 220 FSC** Top IP5 T1 **T2** Horizontal Horizontal BPN BLM BLM Bottom Bottom $5.3 \le \eta \le 6.5$ $3.1 \le \eta \le 4.7$ 214.8 m 7.5 m 10.5 m 13.5 m 149.1 m 150.3 m 219.8 m ~140 m ISMD'13 Chicago Máté Csanád, Eötvös University

upper vertical pot

Introduction

Forward detectors at ATLAS

- Introduction
- Cross-section measurements
- Single diffraction
- Double diffraction
- Central diffraction
- Some more results
- Summary

TOTEM: Differential elastic cross-sections

- Based on event numbers & luminosity: $\mathcal{L}\frac{d\sigma}{dt} = \frac{dN}{dt}$
- Measurements at several optics (β^{*}) setups
- Small |t| (mom. transfer): exponential; diffractive minimum; power-law tail
- Special $\beta^* = 1000 \text{ m run}$, down to $6 \cdot 10^{-4} \text{ GeV}^2$

• $\rho = \Re F^H / \Im F^H$ measured: $0.110 \pm 0.027 (\text{stat}) \pm 0.010 (\text{syst})^{+0.013}_{-0.012} (\text{model})$

TOTEM: Total cross-section measurements

- "Elastic only" method via optical theorem: $\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \frac{1}{L} \frac{dN_{el}}{dt}$
- Luminosity-independent method: $\sigma_{tot} = \frac{16\pi (\hbar c)^2}{1+\varrho^2} \frac{dN_{el}/dt}{N_{el}+N_{inel}}$
- ϱ -independent method: $\sigma_{tot} = (N_{el} + N_{inel})/\mathcal{L}$
- Total inelastic rate via T2 trigger, corrections from T1 & MC
- Ongoing analyses for 2.76 and 8 TeV with different optics

 $7 {
m TeV}$

ATLAS: Integrated cross-section for $\xi > \xi_{cut}$

- The inelastic cross-section obtained by integration from ξ_{cut} to 1
- Same as integrating from 0 to $\Delta \eta_f^{max}$
- RMK model (Ryskin, Martin, Khoze), PYTHIA and PHOJET used
- Small ξ region underestimated
- 14.5 mb for $\xi < 8 \cdot 10^{-6}$ compared to 6 mb (3 mb) by PYTHIA (PHOJET)
- RMK model lies below data generally
- Low ξ enhancement in agreement
- Total inelastic cross-section: $\sigma_{\text{inel}} = 69.4 \pm 2.4(\exp) \pm 6.9(\text{extr}) \text{ mb}$
- In agreement with TOTEM (large uncert.)
- Ref.: Eur. Phys. J. C72 (2012) 1926

- Introduction
- Cross-section measurements
- Single diffraction
- Double diffraction
- Central diffraction
- Some more results
- Summary

Soft single diffraction at TOTEM

• Rapidity gap ($\Delta \eta = -\ln \xi$) determines diffractive mass ($M_X^2 = \xi s$)

• Event classification based on tracks in T1 & T2, proton in RP

SD class	Configuration	M_X [GeV]	$\xi=\Delta p/p$
Low mass	1 RP + opp. T2	3.4 - 7.0	2·10 ⁻⁷ − 10 ⁻⁶
Medium mass	1 RP + opp. T2 + opp. T1	7.0 – 350	10 ⁻⁶ – 0.0025
High mass	1 RP + opp. T2 + same T1	350 - 1100	0.0025 – 0.025
Very high mass	1 RP + both T2	1100 –	0.025 –

TOTEM results on soft single diffraction

 Exponential shape fitted Low Mass $(e^{-B|t|})$ %/ndf 27.69/5 Constant 2.74±0.0 M=3.4 - 7 GeV T2 T1 T1 T2 B= 10.1 GeV⁻² Corrections: RPs TOTEM PRELIMINARY Trigger efficiency Reco. efficiency Proton acceptance 0.05 0.1 0.15 Medium Mass Background M=7 - 350 GeV 36.92 / 33 Donstant 3.152 ± 0.01 T2 T1 T1 T2 Extrapolation B= 8.5 GeV⁻² RPs RPs TOTEM PRELIMINARY • Estimated σ uncertainty: 20% Quite preliminary result 0.05 $\sigma_{3.4-1100 \text{ GeV}} = 6.5 \pm 1.3 \text{ mb}$ 0.15**High Mass** To be understood! M=0.35 - 1.1 TeV T2 T1 T1 T2 Very high mass: ongoing B= 6.8 GeV⁻² RPs RPs TOTEM PRELIMINARY • ALICE result for $M_X < 200 \text{ GeV}$ $\sigma_{<200 \text{ GeV}} = 14.9^{+3.4}_{-5.9} \text{ mb}$ 0.05 0.1 5 0.3 |t| (GeV^2)

Ρ

P

 $F(x_{p},t)$

Р

 $\mathbf{F}_{1}^{\mathbb{P}}(\mathbf{\beta},\mathbf{Q}^{2}$

Diffractive dijets at CMS

- Diffraction with a hard scale set by a dijet system
- Described by dPDF ($\mathbb P$ flux imes PDF) + pQCD σ
- Diffractive selection described by mix of diffr. (POMPYT) & non-diffractive (PYTHIA) samples

- Introduction
- Cross-section measurements
- Single diffraction
- Double diffraction
- Central diffraction
- Some more results
- Summary

Soft double diffraction at TOTEM

- Particle in both T2 arms, no T1 tracks
 - 0×T1 + 2×T2 topology
 - Pseudorapidity range: 4.7-6.5, i.e. 3.4 < M < 8 GeV
 RPs

- Background estimation:
 - Single diffractive: 0×T1 + 1×T2 + proton in RP
 - Non-diffractive: MC prediction based on 2×T1 + 2×T2
- Validation of backgr. estimates:

• Ref.: CERN-PH-EP-2013-170

T1

T2

CMS

T1

T2

RPs

_η=6.5

TOTEM results on double diffraction

- Cross-section result: $\sigma_{DD (4.7 < \eta < 6.5)} = 116 \pm 25 \ \mu b$
- PYTHIA 8: 159 μb, PHOJET: 101 μb
- Two η_{\min} regions: 4.7-5.9 (a) and 5.9-6.5 (b)
- "Differential" result:

	(a b)+(a b)	a+a	b+b	a+ b	b+a
TOTEM result [µb]	116 ± 25	65 ± 20	12 ± 5	26 ± 5	27 ± 5
PYTHIA [μb]	159	70	17	36	36
PHOJET [µb]	101	44	12	23	23

- PYTHIA total: 8.1 mb, PHOJET total: 3.9 mb
- CERN-PH-EP-2013-170 ; arXiv:1308.6722
- Largest source of uncertainty: tracking, η_{\min} reco. to generator transformation
- Improvement expected with 8 TeV data (with CMS)

SD & DD cross-sections at CMS

Measure event counts with gap on + or - side

- Multiplied by 2 to account for both side processes
- $\sigma_{DD} = 0.93 \pm 0.01 (\text{stat})^{+0.26}_{-0.22} (\text{syst}) \text{ mb, for } \Delta \eta > 3, M_X, M_Y > 10 \text{ GeV}$
- Pythia8-MBR: describes SD, DD partially
- Pythia6/8: fails with SD

- Introduction
- Cross-section measurements
- Single diffraction
- Double diffraction
- Central diffraction
- Some more results
- Summary

Central diffraction at TOTEM

• Event topology (2RP+T2): RP T2 T2 RP

- Two rapidity gaps $\Delta \eta_1 = \xi_1$ and $\Delta \eta_2 = \xi_2$, thus $M_X^2 = \xi_1 \xi_2 s$
- Background: elastic, inelastic with beam-halo (pile-up)
- Beam halo negligible: $y > 11\sigma_{\text{beam}}$
- Elastic rejected via anti-elastic cuts, non-elastic topologies (e.g. top-top)
- Single-arm event rate in RP (corrected):
- Only *t* distribution is exponential (Jac.)
- MC based fit on t_y distribution
- Cross-section estimate: $\sigma_{CD} \approx 1 \text{ mb}$

Central diffraction with TOTEM+CMS

• Diffractive mass determined by TOTEM ($M_X = \sqrt{s\xi_1\xi_2}$) & CMS (directly)

- Unprecedented rapidity coverage
- M & p from CMS & TOTEM consistent
- Pile-up removal crucial
 - Elastic + SD or elastic + beam halo
 - Cut on CMS FSC: QCD background
 - CMS and TOTEM masses equal
- High p_t jets with leading protons:
 - Signature: ≥ 2 tracks with $p_t > 20$ GeV
 - Proton in RP
 - FSC & T2 empty

- Introduction
- Cross-section measurements
- Single diffraction
- Double diffraction
- Central diffraction
- Some more results
- Summary

Pseudorapidity distribution results

- TOTEM: based on T2 trigger, at least 1 particle with $p_t > 40 \text{ MeV}/c$
- More than 99% of ND
- Diffractive as well (if $M > 3.4 \text{ GeV}/c^2$)
- LHC dataset compiled

Pseudorapidity distributions with TOTEM+CMS

- CMS & TOTEM also triggered with T2, same reconstruction (at least 1 track)
- Corrections and correlated systematics under study

NSD & SD enhanced measurement also ongoing

Forward rapidity gap cross-sections, ATLAS

- Rapidity gap measured from calorimeter edge ($\eta = \pm 4.9$)
- Systematic uncertainties: ~8% at large gaps, ~20% at small gaps
- Large gaps: contribution of SD and DD
- Small gaps: dominated by hadronization fluctuations in ND
- HERWIG++ (does not contain diffraction): bumps around $\eta \sim 6$, fails
 - Next version handles heavy mass clusters better, fixes rapidity gap modelling
- PYTHIA generally too high; PHOJET works best.

Forward rapidity gap cross-sections, CMS

- Exponentially falling non-diffractive contribution at small gap size
- Diffractive plateau and slowly rising cross-section with increasing gap size
- Hard to separate SD and DD events at central region using forward rapidity gap observable

CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 20.3 μb^{-1}

CMS, L = 20.3 μb^{-1}

 CMS & ATLAS result compared (slightly different rapidity region)

 10^{2}

- Introduction
- Cross-section measurements
- Single diffraction
- Double diffraction
- Central diffraction
- Some more results
- Summary

Summary

Summary

- TOTEM, CMS and ATLAS provide unprecedented measurement possibilities
 - Very forward detectors, especially Roman Pots
- Cross-section measurements
 - Differential cross-section results hardly describable by models
 - Total elastic & inelastic cross-sections measured via independent methods
 - ATLAS measurement: integrated to ξ_{cut}
- Single diffraction
 - TOTEM measurement done in three mass ranges
 - Diffractive dijets measured at CMS
- Double diffraction
 - TOTEM: final result in a limited rapidity region
- Central diffraction
 - Preliminary result at TOTEM & CMS
 - High p_t jets with leading protons seen
- Other results
 - TOTEM+CMS: single diffractive enhanced pseudorapidity distributions
 - Forward rapidity gap cross-section at ATLAS & CMS

Thank you for your attention

Recent talks for further reading:

- ATLAS Results on Soft Diffraction, Simone Monzani, EDS Blois 2013
- Diffraction and rapidity gap measurements with ATLAS, Vlastimil Kus, Photon 2013
- CMS results on soft diffraction, Konstantin Goulianos, EDS Blois 2013
- Diffraction at CMS, Sercan Sen, Forward Physics at the LHC 2013
- CMS results on Hard Diffraction, Christina Mesropian, EDS Blois 2013
- TOTEM Results on Elastic Scattering and Total Cross-Section, Jan Kaspar, EDS Blois 2013
- Review of TOTEM Results, Mario Deile, WE-Heraeus-Summerschool 2013
- Elastic and Inelastic Diffraction at the LHC, Risto Orava, LHCp 2013
- Soft diffraction and forward multiplicity meas. with TOTEM, F. Oljemark, EDS Blois 2013

Differential elastic cross-section vs. models

Pseudorapidity distributions: SD/NSD enhanced

• Analysis ongoing in both CMS & TOTEM

NSD-enhanced

SD-enhanced

LHC optics for diffractive physics

• An elastic event at LHC

Different optics conditions as seen by TOTEM

 $\beta^* = 90$ m optics

- RP structure reflects possibilities in various optics conditions
- Low cross-section processes studied with regular optics (continous running)
- High cross-section processes: dedicated short runs with optimized conditions

Cross-section measurements TOTEM

- Elastic dierential cross-section
 - 7 TeV
 - $\beta^* = 90$ m and medium |t| at $\beta^* = 3.5$ m: published
 - high |t| at β^* = 3.5 m: advanced analysis
 - 8 TeV
 - $\beta^* = 1000 \text{ m}$: publication ongoing
 - $\beta^* = 90 \text{ m}$: advanced analysis
 - 2.76 TeV
 - $\beta^* = 11 \text{ m}$: analysis ongoing
- Total cross-section
 - 7 TeV
 - $\beta^* = 90 \text{ m}$: published
 - 8 TeV
 - $\beta^* = 90$ m: published
 - $\beta^* = 1000 \text{ m}$: publication ongoing (+ separation Coulomb/nuclear effects)
 - 2.76 TeV
 - $\beta^* = 11 \text{ m}$: elastic analysis started, inelastic ready
- Coulomb-nuclear interference studies
 - 8 TeV
 - $\beta^* = 1000 \text{ m}$: publication ongoing

TOTEM upgrade plans

- RP system will consist of 4 RP units/arm, each with 2 vertical + 1 horizontal pots equipped with 10 planes Si-strip detectors, with full trigger capability
- Improving RP multi-track capability
 - Tilt far RP station for ghost track suppression
 - Replace strip detectors with pixel detectors
- Reducing RP-beam coupling
 - Optimized RP impedance (reduce heating & feedback) needed
 - Cylindrical RP with Ferrites shown a reduced beam power-loss
 - For 210m far-horizontal RP a cylindrical copper shield is studied for impedance reduction
- Improving proton left-right correlation capability
 - Timing sensors with few times 10 ps timing resolution

LHC setup

