Recent Heavy-Ion Results with the ALICE Detector

Jörn Putschke On behalf of the ALICE Collaboration

The ALICE Experiment

The ALICE Experiment

Focus on hard probes:

Before we can utilize hard probes/jets (and their modifications/tomography) to probe the medium in heavy-ion collisions we first have to establish that:

1) The probe is calibrated:

Comparison of pQCD calculations with p-p measurements

Focus on hard probes:

Before we can utilize hard probes/jets (and their modifications/tomography) to probe the medium in heavy-ion collisions we first have to establish that:

1) The probe is calibrated:

Comparison of pQCD calculations with p-p measurements

2) <u>Control experiment:</u>

Measure initial state/Cold Nuclear Matter (CNM) effects; Probe the "cold medium" via p-Pb collisions (compare to p-p)

Nuclear Modification (RAA) in p-Pb Collisions

Strong suppression in central Pb-Pb collisions R_{pPb} (minbias) consistent with unity in p-Pb collisions

Jet R_{pPb} (minbias) consistent with unity in p-Pb collisions

Heavy-flavor RAA in p-Pb Collisions

Heavy-flavor R_{pPb} (minbias) at mid-rapdidity consistent with unity in p-Pb collisions (within uncertainties)

J/ψ R_{pPb}:

- Described by shadowing
- CGC overestimates the suppression at large y

Ύ **R**_{pPb}:

- Consistent with J/ψ (weaker y dep.)
- Shadowing alone seems to underestimate the suppression

Before we can utilize hard probes/jets (and their modifications/tomography) to probe the medium in heavy-ion collisions we first have to establish that:

1) The probe is calibrated:

Comparison of pQCD calculations with p-p measurements

2) <u>Control experiment:</u>

Measure initial state/Cold Nuclear Matter (CNM) effects; Probe the "cold medium" via p-Pb collisions (compare to p-p)

Hard Probes in Pb-Pb Collisions (a small selection ...)

Nuclear Modification in Pb-Pb Collisions

at the LHC is a final-state effect!

30

60

50

70 80 90 100 110 120

(GeV/c)

p^{ch+em}

Jet Structure in Pb-Pb Collisions

Ratio of jet x-section R=0.2/R=0.3 is sensitive to broadening in the jet structure:

Pb-Pb jet structure consistent with vacuum jets; no jet broadening (within R=0.3) observed!

Similar R_{AA} for pions, kaons and protons at high-p_T Proton/pion ratio at high-p_T consistent with vacuum → Particle composition unmodified in Pb-Pb collisions!

"Jet PID" in Pb-Pb Collisions

A closer look via two particle $\Delta \eta x \Delta \Phi$ correlations; Isolate jet-like and bulk-like region:

p/π in bulk region consistent with inclusive ratio p/π in jet consistent with vacuum

First clear indication of mass dependent partonic energy loss in heavy-ion collisions! Bottom less suppressed than charm and light flavor!

ALICE

Hard Probes Summary:

The energy loss of colored probes in the QGP at the LHC is unambiguously a final-state effect!

The hard core of the jet, after energy loss, seems to fragment vacuum like: No broadening or change in PID is observed!

For the first time:

Mass dependent partonic energy loss is observed (bottom loses less energy than charm and light quarks)

Observations are (qualitatively) consistent with a pQCD-type energy loss picture in which a significant amount of energy loss happens at early times with the "lost" energy thermalized in the medium and the leading parton fragmenting vacuum like!

T. Renk, arXiv:1306.2739

The Control experiment:

Measure initial state/Cold Nuclear Matter (CNM) effects; Probe the "cold medium" via p-Pb collisions (compare to p-p)

Concerning hard probes!

The Control experiment:

Measure initial state/Cold Nuclear Matter (CNM) effects; Probe the "cold medium" via p-Pb collisions (compare to p-p)

Concerning hard probes!

BUT: Surprise concerning the "bulk" properties in high multiplicity p-Pb collisions: *The twin ridge structure!*

Just a quick look ...

Fourier Decomposition of the twin Ridges

v₂>v₃ in central p-Pb collision
v_n increasing with p_T
centrality dependence visible

Assoc.

 $\Delta \phi = \phi_{\text{Trigger}} - \phi_{\text{Assoc.}}$

PID v₂ in p-Pb and Pb-Pb Collisions

arXiv:1307.3237

Similar features of $v_2(p_T)$ in p-Pb and PbPb collisions observed:

Mass ordering at low- p_T (in Pb-Pb attributed to hydro behavior) Proton $v_2 > pion v_2$ for $p_T > 2$ GeV (constituent quark scaling in p-Pb!?)

Similar trend in p-Pb and p-p collisions compared to Pb-Pb collisions as function of dN_{ch}/dη (although smaller in p-Pb)

The control experiment p-Pb

Very Interesting observations and more to come ...