Recent Heavy Ion Results with the CMS Detector Hard and EM Probes

Jet 1, pt: 70.0 GeV

Yen-Jie Lee (MIT)

for the CMS Collaboration

XLIII International Symposium on MultiParticle Dynamics

> Chicago, USA 19 September, 2013

Yen-Jie Lee (MIT)

Probe the medium

Use the hard probes produced with the collisions

Heavy Ion Collision Recorded by the CMS Detector

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 151076/1405388

How Do We Extract Medium Effects?

$$R_{AA} = \frac{\sigma_{pp}^{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA} / dp_T d\eta}{d^2 \sigma_{pp} / dp_T d\eta} \leftarrow \frac{PbPb \text{ measurements}}{pp \text{ reference}}$$

Number of nucleon-nucleon collisions per event

(Non-) Suppression of Colorless Probes

Track and secondary J/ψ (from b-quark)

Can we collect the radiated energy back by jet reconstruction algorithm?

b-quarks (0-100%) (via secondary J/ψ)

60

50

0.2

٥Ľ

10

20

30

|y|<2.4

90

p_{_} [GeV/c]

10

80

70

Inclusive jet R_{AA}

Photon-Jet in PbPb Collisions

γ+Jet: u,d Quark "Absolute Energy Loss"

γ+Jet Azimuthal Angular Correlation

The first photon-jet correlation measurement in heavy ion collisions

Jet Shape and Fragmentation Function

Large parton energy loss (O(10GeV)) in the medium, out of jet cone \rightarrow What about jet structure?

Jet shape:

shape of the jet as a function of radius (r)

$$\rho(r) = \frac{1}{f_{ch}} \frac{1}{\delta r} \frac{1}{N_{jet}} \sum_{jets} \frac{p_{T}(r - \delta r/2, r + \delta r/2)}{p_{T}^{jet}}$$
$$f_{ch} = \frac{1}{N_{jet}} \sum_{jets} \frac{p_{T}(0, R)}{p_{T}^{jet}}$$

Tracks

Anti- $k_T R=0.3$ Jet $p_T > 100 \text{ GeV/c}$ Jet $|\eta| < 2$ Track $p_T > 1 \text{ GeV/c}$

Jet fragmentation function: how transverse momentum is distributed inside the jet cone

$$\xi = \ln \frac{1}{z}$$
; $z = \frac{p_{\parallel}^{\text{track}}}{p^{\text{jet}}}$

Jet Shape and Fragmentation Function

Missing Link: pPb Collisions

Dijet in pPb Collisions Recorded by CMS

pPb Event Classification

Proton Side Energy

CMS PAS HIN-13-001

Minimum bias selection:

At least one particle with E>3 GeV in the pseudorapidity range -5 < η < -3 and one in the range 3 < η < 5

Pb Ion Side Energy

Dijet p_T Ratios in pPb Collisions

• A ~10% drop in dijet pT ratio was observed in PbPb 0-10% central collisions

- In pPb collsions: With the current systematic uncertainty, no detectable change in $<p_{T,2}/p_{T,1}>$ as a function of forward calorimeter energy
- Establish the basis to use the jets for nPDF determination

Dijet n_{dijet} Distributions

Compare to NLO Calculations

Dijet η in different event classes

- Dijet η distribution changes as a function of forward calorimeter energy.
- The large modification can not be explained by shadowing effect or centrality dependent PDF

 When energy on proton side is small <η_{dijet} > almost flat as a function of forward activity on Pb side.

Still flat ..

Slope starts to increase..

Slope increases even more..

And even more ..

Summary

- CMS has presented interesting results using tracks, photons, muons and jets in heavy ion collisions
 - Confirmed N_{coll} scaling using colorless probes
 - An unprecedented picture of jet quenching is emerging.
- Jet quenching in pPb collisions:
 - No significant modification observed in dijet p_T ratio (shift in dijet p_T ratio < 2%)
- Dijet pseudorapidity distributions in pPb collisions:
 - Provide useful constraints for nPDF determination
 - Strong correlation between η_{dijet} v.s. forward calorimeter energy is observed
- A lot of exciting analyses on the high statistics data expected in 2015
 - Parton flavor dependence of jet quenching
 - High statistics photon-jet and Z-jet events

Backup slides

Outlook

- Level-1 online trigger system upgrade: permit high luminosity data taking and efficient online jet trigger
- Extension of the existing analysis in 2015
 - Photon-track and Z-track correlation
 - Flavor dependence of jet quenching:
 - b jet tagging and di-b-jet asymmetry
 - Gluon jet quenching: 3-jet to 2-jet ratio
 - Identified heavy flavour meson

Track p_T distributions in jet cones (R=0.3)

High p_T : no change compared to jets in pp collisions
In (central) PbPb: excess of tracks compared to pp at low p_T

Tracking efficiency

Jet resolution and enery scale

Subtracted background

Subtracted background

γ -jet correlations

- Photons serve as an unmodified energy tag for the jet partner
- Ratio of the p_T of jets to photons $(x_{J\gamma}=p_T^{jet}/p_T^{\gamma})$ is a direct measure of the jet energy loss
- Gradual centrality-dependence of the $x_{J_{\gamma}}$ distribution

PLB 718 (2013) 773

Background subtraction

Nuclear Parton Distribution Function

Gluon and Quark nPDF/PDF in EPS09 LO

Gluon nPDF/PDF comparison between EPS09, EKS98, nDS and FGS10

François Arleo and Jean-Philippe Guillet http://lapth.cnrs.fr/npdfgenerator/

Event classes

"roughly" correspond to N_{trk}^{Offline}>110 bin, given the caveat HF energy is loosely correlated with N

$E_T^{HF[\eta >4]}$ range (GeV)	Fraction of DS events	Fraction of dijet events	$\langle N_{\rm trk}^{\rm corrected} \rangle$ in DS events
0-20	73.1%	52.6%	33±2
20-25	10.5%	16.8%	74 ± 3
25-30	7.1%	12.7%	$88{\pm}4$
30-40	6.8%	13.0%	106 ± 5
40-100	2.5%	4.9%	135 ± 6

Dijet momentum imbalance

Parton energy loss is observed as a pronounced energy imbalance in central PbPb collisions

Jet energy correction

dijet and photon-jet

- Data-driven jet energy correction from dijet and photon-jet events (method described in JINST 6 (2011) P11002)
- Jet with background subtraction used as the main result
- Cross-check with jets without background subtraction

Looking at high multiplicity event

 N_{ch} : Number of charged particles with $|p_T|$ >0.4 and $|\eta|$ <2.4

• Slicing on N_{ch} may cause bias on jet fragmentation pattern

Yen-Jie Lee (MIT)

Inclusive jet spectra: jet R_{AA}

Inclusive jet spectra: jet R_{AA}

Strong suppression of inclusive high p_T jets A cone of R=0.2, 0.3, 0.4 doesn't catch all the radiated energy Are those high p_T jets "**completely absorbed**" by the medium?

Where does the energy go?

• Suppression of high p_T jets

 Large dijet (photon-jet) energy (momentum) imbalance

 $\Delta E_{T} \sim O(10)$ GeV, ~10% shift in <dijet p_T ratio>

Where does the energy go?

Missing- p_T^{\parallel}

Missing
$$p_T^{\parallel}$$
: $p_T^{\parallel} = \sum_{\text{Tracks}} -p_T^{\text{Track}} \cos(\phi_{\text{Track}} - \phi_{\text{Leading Jet}})$

Where does the energy go?

- - Calculate projection of p_T on leading jet axis and average over selected tracks with

 $p_T > 0.5 \text{ GeV/c and} |\eta| < 2.4$

Underlying events cancels

Sum over all tracks in the event

Missing- p_T^{\parallel}

Integrating over the whole event final state the dijet momentum balance is restored

Missing- p_T^{\parallel}

Fraction of leading jets with an away side jet

Dijet p_T Ratio (p_{T2}/p_{T1})

• Very high p_T jets are also quenched

PLB 712 (2012) 176

Dijet η in different event classes

CMS PAS HIN-13-001

Looking at high multiplicity event

- Several options tested:
 - Tracker based variables:
 - Number of pixel hits
 - Number of pixel tracks, or number of tracks
 - Introduce fragmentation bias as demonstrated before
 - ZDC based variables:
 - Doesn't have good enough resolution to go to very high multiplicity events
- Final choice:

 E_T measured in 4<| η |<5.2 by forward calorimeter ($E_T^{HF[|\eta|>4]}$)

Dijet Δφ

 $\Delta \phi$ distribution is unchanged w.r.t. HF energy

Yen-Jie Lee (MIT)

Tagging and counting b-quark jets

Secondary vertex tagged using flight distance significance

- Tagging efficiency estimated in a **data-driven** way
- Purity from **template fits** to (tagged) secondary vertex mass distributions

Fraction of b-jets among all jets

b-jet fraction: similar in pp and PbPb \rightarrow b-jet quenching is comparable to light-jet quenching (R_{AA} \approx 0.5), within present systematics

Dijet n v.s. Forward Calorimeter Energy

- η_{dijet} distributions plotted against PYTHIA references
- A systematic shift in the positive η direction vs HF energy

Jet Shapes

Jet Fragmentation Functions

Dijet p_T Ratios in pPb Collisions

CMS PAS HIN-13-001

