Recent Results from the D0 Experiment on Heavy Particle Production with jets

Ashish Kumar

on behalf of the D0 Collaboration

International Symposium on Multiparticle Dynamics (ISMD2013), Chicago, 09/18/2013

Outline

- Motivation
- The DØ Detector
- Measurement Strategy
- Results
 - W + jets
 - W + b jets
 - Z + b jets
 - Z+ c jets
- Conclusions

Motivation

- Test of pQCD calculations
 - Recent high jet multiplicity calculations available
 - 5FNS and 4FNS schemes
 - Novel techniques: NLO + Parton Shower merging
- Validation of simulation models
 - Novel techniques for matching Matrix Elements with Parton Shower
- Sensitive to heavy flavor content of the proton
- Backgrounds for variety of precision SM measurements and searches for new physics Top quark properties Study of Higgs Boson SUSY searches (e.g. sbottom)

Data Sample

Results presented based on proton-antiproton collision data at √s=1.96 TeV with integrated luminosity of 6.1 – 9.7 fb⁻¹

•	γ + jet	8.7 fb-1	arXiv:1308.2708
•	W + jets	6.2 fb-1	arXiv:1302.6508
•	γ +b-jet	8.7 fb-1	PLB 714, 32 (2012)
	Z+b-jet	9.7 fb-1	PRD 87, 092010 (2013)
•	W+b-jet	6.1 fb-1	PLB 718, 1314 (2013)
•	γ+c-jet	8.7 fb-1	PLB 719, 354 (2013)
•	Z+c-jet	9.7 fb-1	arXiv:1308.4384

arXiv:1302.6508

- Comprehensive study of W+n-jet production (n=1 4)
 - Measurements of 40 observables
 - Uncertainties smaller or similar compared to theoretical ones
 - Comparison with recent NLO calculations and MCs (PS, ME+PS)
 - Validation of new theoretical approaches and MC tuning
- Measurement of the nth-jet rapidity distribution
 - Tests the modeling of parton emission
 - All predictions largely agree in shape at central rapidities

Ashish Kumar

W+Jets Measurements

arXiv:1302.6508

- Dependence of mean no of jets in an event on total transverse energy of the hard interaction tested for the first time

 - NLO describes <N_{jet}> spectrum over entire H_T range
 Both PS and ME+PS underestimate amount of high p_T jet emission

Heavy Flavor (HF) Jet Tagging

- Long lifetime (~1 ps) of b/c hadrons resulting in displaced secondary vertex.
- Large hadron masses 2-5 GeV
 - Tracks displaced from primary vertex with large impact parameters
- HF tagging exploits characteristics of the tracks to create a discriminant
 - Typically 50-60% efficient for 0.5-1.5% fake rate

9/17/13

- The tagged sample still has some fraction of misidentified jets
- To further separate jets of different flavors, use a discriminant
 - M_{SVT} is invariant mass of tracks associated to secondary vertex
 - JLIP is jet lifetime impact parameter

$$D_{\rm MJL} = \frac{M_{\rm svt}/5 - ln(\rm JLIP)/20}{2}$$

- Fit background subtracted data distribution with the templates to extract the jet flavor fractions
 - For c-jet fraction, fitting with three templates return large uncertainties
 - Fit data with b- and c-jet templates after subtracting the residual contribution of light jets

W + b-jet(s)

PLB 718, 1314 (2013)

- **○** $W(\rightarrow Iv)$ selection
 - Soluted lepton $p_T > 20 \text{ GeV}$
 - **Solution** Muon: $|\eta|^{\mu}| < 1.7$
 - Electron: |η e| < 1.1 or 1.5 < |η e| < 2.5</p>
 - **Solution** Missing $E_T > 25 \text{ GeV}$
- Jet selection
 - ⇒ 2 1 jet, R=0.5
 - p_T > 20 GeV, | η | < 1.1</p>
- Backgrounds
 - Single top, top pair and diboson production
 - Multi-jet production estimated from data

W + b-jet(s)

PLB 718, 1314 (2013)

 $= 1.05 \pm 0.03$ (stat.) ± 0.12 (syst.) pb

- = 1.34 ^{+0.41}_{-0.34} pb (MCFM NLO)
- = 1.21 pb (SHERPA)
- = 1.54 pb (MADGRAPH)

Measurement consistent with NLO prediction within uncertainties

9/17/13

Data – Bkg

W+b frac.

W→µv

4127

 0.30 ± 0.04

Ashish Kumar

σ (Z + b) / σ (Z + jets)

Phys. Rev. D 87, 092010 (2013)

- Measurement of the ratio allows for precise comparison with theory
- **⊃** Z(→ee $I \mu \mu$) selection
 - **Solution** Missing $E_T < 60 \text{ GeV}$
- Jet selection
 - ⇒ 2 1 jet
 - ⇒ p_T > 20 GeV, | η | < 2.5

 σ (Z + b) / σ (Z + jets)

Phys. Rev. D 87, 092010 (2013)

 σ (Z+b jet) / σ (Z + jets)

First measurement of the ratio differentially as a function of kinematic observables
Phys. Rev. D 87, 092010 (2013)

9/17/13

Ashish Kumar

 σ (Z + c) / σ (Z + jets)

- First measurement of the Z+c-jet production
- **⊃** Z(→ee $I \mu \mu$) selection
- Jet selection
 - **1** jet, p_T > 20 GeV, | η | < 2.5

$$\frac{\sigma(Z+c \text{ jet})}{\sigma(Z+\text{ jet})} = \frac{N_{fitted} f_c}{N_{Z+j}^{presel} \epsilon_{tag}^c} \times \frac{\mathcal{A}_{incl}}{\mathcal{A}_c}$$

D0 $0.0829 \pm 0.0052 \text{ (stat.)} \pm 0.0089 \text{ (syst.)}$ MCFM [MSTW2008, $M_Z^2 + \Sigma \text{(jet } p_T)^2$ $0.0368^{+0.0063}_{-0.0039}$ MCFM [IC model, CTEQ6.6c] $0.0425^{+0.0048}_{-0.0029}$

Measurements significantly in excess of predictions

arXiv:1308.4384

9/17/13

Ashish Kumar

σ (Z+c jet) / σ (Z+jet) Dependence

arXiv:1308.4384

- Measurements significantly in excess of predictions
- Predictions with enhanced g→cc rates provide better description

σ (Z+c jet) / σ (Z+b-jet)

arXiv:1308.4384

$$\frac{\sigma(Z+c \text{ jet})}{\sigma(Z+b \text{ jet})} = \frac{f_c \epsilon^b_{tag}}{f_b \epsilon^c_{tag}} \times \frac{\mathcal{A}_b}{\mathcal{A}_c}$$

- Cancellation of many syst. uncert. in the ratio
- Allows for precise comparison with theory calculations

D0	4.00 ± 0.21	(stat.) ± 0.58 (syst.)
MCFM [MSTW2008, M _Z ² MCFM [IC model, CTEQ6 ALPGEN SHERPA	'+Σ(jet p _⊤)² 6.6c]	1.64 2.23 1.57 2.19

Measurements significantly in excess of predictions

- Vector boson + jet production provides a good laboratory for precision tests of pQCD and probes the heavy flavor content of the proton
- Understanding of these processes key for the New Phenomena searches
- Many interesting results from the D0 experiment
 - Extend the previously probed phase space
 - Test various predictions from theory and simulation
 - Important feedback for the theory development & MC tuning
- Compressive study of W+njet production
- Many new measurements on vector boson plus heavy flavor jets
 - **C** First measurement of Z+c-jet production
- More interesting measurements in the pipeline. Stay tuned.

Extra Slides

Jets

Reconstruction

- Hadronic shower
- Iterative mid-point cone algorithm, R = 0.5
- Jet Energy Scale
 - **S** Measured in γ+jet and Dijet events
 - Correct energy to particle level
 - Correct for detector response, out of cone showering, overlap with pile up energy
- Correct parton-level theory for nonperturbative effects (hadronization and Underlying events) using parton shower Monte Carlo

arXiv:1302.6508

Measurement of the probability of emission of 3rd jet in the inclusive W+2jet events as a function of

- Dijet rapidity separation of two highest p_T jets
- Dijet rapidity separation of two most rapidity-separated jets
- Dijet rapidity separation of two highest p_T jets and the 3rd jet is emitted into the rapidity interval defined by the two leading jets

σ(γ+c)/σ(γ+b)

PLB 719, 354 (2013)

- Measurement of ratio allows more precise comparison with theory
 - Cancellation of many systematic uncertainties
- p_T^γ <70 GeV: Good agreement with NLO, PYTHIA and SHERPA, while k_T-factorization predicts smaller ratios
- p_T^γ >70 GeV: Data show systematically higher ratios
 - k_T-factorization tend to agree within uncertainties
 - BHPS model with small shift in normalization should provide better description
 - Predictions with larger g→cc rates (~1.7) also provide better description

Ashish Kumar

γ + b-jet(s)

PLB 714, 32 (2012)

- **\bigcirc** Reasonable description within uncertainties at low p_T^{γ} <70 GeV
- Disagreements (difference in slopes) at higher p_T^γ
 - Need for higher order corrections at large p_T^γ dominated by annihilation process, and resummation of diagrams with additional gluon radiation.
- Better description by SHERPA and k_T-factorization approach

γ + c-jet(s)

PLB 719, 354 (2013)

- Reasonable description within uncertainties at low p_T^γ <70 GeV</p>
- **Systematic disagreement at higher** p_T^{γ}
 - Need for HO corrections at large p_T^γ dominated by annihilation process, and resummation of diagrams with additional gluon radiation.
- Better description by SHERPA and k_T-factorization approach