

Colour Reconnection and Its Effect on Precise Measurements at the LHC

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden

ISMD 2013, Chicago, 17 September 2013

An event consists of many different physics steps, which have to be modelled by event generators:

The Density of Particle Production

Torbjörn Sjöstrand

Reconnection in B decays

Colour operators in B decay \Rightarrow some η_c : A. Ali, J.G. Körner, G. Kramer, J. Willrodt, Z. Phys. **C1** (1979) 269

 $B \rightarrow J/\psi \rightarrow \mu^+\mu^-$ good way to find B mesons: H. Fritzsch, Phys. Lett. **B86** (1979) 164, 343

... soon confirmed by experiment

 $g^* \rightarrow c\overline{c} \rightarrow J/\psi$ production mechanism in pp ("colour octet") H. Fritzsch, Phys. Lett. **B67** (1977) 217 more complicated to test (at the time, later "confirmed")

Reconnection at $\mathsf{Sp}\overline{p}\mathsf{S}$

T.S. and M. van Zijl, Phys.Rev. **D36** (1987) 2019

FIG. 27. Average transverse momentum of charged particles in $|\eta| < 2.5$ as a function of the multiplicity. UAI data points (Ref. 49) at 900 GeV compared with the model for different assumptions about the nature of the subsequent (nonhardest) interactions. Dashed line, assuming $q\bar{q}$ scatterings only; dotted line, gg scatterings with "maximal" string length; solid line gg scatterings with "minimal" string length.

$\langle p_{\perp} \rangle (n_{\rm ch})$ sensitive to colour flow.

long strings to remnants ⇒ comparable n_{ch} /interaction ⇒ $\langle p_{\perp} \rangle (n_{ch}) \sim$ flat.

shorter extra strings for each consecutive interaction $\Rightarrow \langle p_{\perp} \rangle (n_{ch})$ rising.

Interconnection at LEP 2

 $e^+e^- \rightarrow W^+W^- \rightarrow q_1 \overline{q}_2 q_3 \overline{q}_4$ reconnection limits m_W precision!

- perturbative $\langle \delta M_W \rangle \lesssim 5$ MeV : negligible! (killed by dampening from off-shell W propagators)
- nonperturbative $\langle \delta M_W \rangle \sim 40$ MeV : inconclusive. (but more extreme models from other authors ruled out)
- Bose-Einstein $\langle \delta M_{\rm W} \rangle \lesssim 100 \text{ MeV}$: full effect ruled out. (but models with ~ 40 MeV barely acceptabe)

V.A. Khoze & TS, PRL 72 (1994) 28; L. Lönnblad & TS, EPJ C6 (1999) 271

Colour rearrangement models for LEP 2

Colour rearrangement studied in several models, e.g.

Scenario II: vortex lines. Analogy: type II superconductor. Strings can reconnect only if central cores cross.

Scenario I: elongated bags. Analogy: type I superconductor. Reconnection proportional to space-time overlap.

In both cases favour reconnections that reduce total string length.

(schematic only; nothing to scale)

Colour assignment at hadron colliders

Multiple colour charges extracted from beams by MPIs:

Ambiguities from $N_C = 3$ and spatial correlations? $N_C = \infty$ builds too high remnant charge (forward particle flow)! Random walk in colour space, with restoring force? Junction topologies when ≥ 2 valence quarks kicked out!

Reconnection at the LHC

 $\langle p_{\perp} \rangle (n_{\rm ch})$ effect alive and kicking:

Colour rearrangement models for the LHC

Space-time models too complicated \Rightarrow simplified (in Pythia)

Common aspect: reduce string length $\lambda = \sum \ln(m_{ij}^2/m_0^2) \sim \text{multiplicity}$ Ingelman, Rathsman: reduce $\sum m_{ij}^2$; Generalized Area Law

In total 12 scenarios in PYTHIA 6, mainly annealing:

- $P_{\text{reconnect}} = 1 (1 \chi)^{n_{\text{MPI}}}$ with χ strength parameter.
- Random assignment by $P_{\rm reconnect}$ for each string piece.
- Choose new combinations that reduce λ (with restrictions).

Pythia 8 still only primitive:

let each MPI either form a separate system, or attach its partons to a higher- p_{\perp} MPI where it gives minimal λ increase.

Much room for improvement.

The Mass of Unstable Coloured Particles

MC: close to pole mass, in the sense of Breit–Wigner mass peak. t, W, Z: $c\tau \approx 0.1 \text{ fm} < r_{p}$.

At the Tevatron: $m_{\rm t} = 173.20 \pm 0.51 \pm 0.71 \text{ GeV} = \text{PMAS(6,1)}$ At the LHC (CMS): $m_{\rm t} = 173.54 \pm 0.33 \pm 0.96 \text{ GeV} = 6:\text{m0}$?

The Mass of Unstable Coloured Particles

MC: close to pole mass, in the sense of Breit–Wigner mass peak. t, W, Z: $c\tau \approx 0.1 \text{ fm} < r_{p}$.

At the Tevatron: $m_{\rm t} = 173.20 \pm 0.51 \pm 0.71 \text{ GeV} = \text{PMAS(6,1)}$ At the LHC (CMS): $m_{\rm t} = 173.54 \pm 0.33 \pm 0.96 \text{ GeV} = 6:\text{m0}$?

Now severely limited by colour reconnection uncertainty

Top mass shift in PYTHIA 6

Studies for the Tevatron. Fit \rightarrow scaled: Jet Energy Scaling. $\Delta m_{\rm top}^{\rm fit}$ $\Delta m_{\rm top}^{\rm scaled}$ Pythia v6.416 Green bands: old virtuality-ordered showers. Tune A Tune A-CR Blue bands: new Tune A-PT p_{\perp} -ordered showers. Tune DW Tune BW In total ± 1.0 GeV, S0 whereof ± 0.7 GeV **S1** perturbative, \$2 and ± 0.5 GeV NoCR. nonperturbative. -10 -5 Δm.

(M.Sandhoff and P.Z Skands, FERMILAB-CONF-05-518-T;) D. Wicke and P.Z. Skands, EPJ C52 (2007) 133, Nuovo Cim. B123 (2008) S1 Kinematics dependence of mass determinations

Dependence of Top Mass on Event Kinematics

- First top mass measurement binned in kinematic observables.
- Additional validation for the top mass measurements.
- With the current precision, no mis-modelling effect due to
 - color reconnection, ISR/FSR, b-quark kinematics, difference between pole or MS[~] masses.

E. Yazgan (Moriond 2013)

Top mass shift in PYTHIA 8

Reconnection and collective flow

Transverse boosts \Rightarrow $(\mathbf{p} + \overline{\mathbf{p}}) / (\pi^+ + \pi)$ \sim collective particle vecocity. 0.35 More common with reconnection. 0.3 0.25 $(D + \overline{D}) / (\pi^{+} + \pi^{-})$ pp √s=7 TeV 0.2 ALICE, preliminary Pythia 8, pp √s=7 TeV 0.15 Pythia 8, tune 4C Tune 4C 0.4 Tune 4C. N < 5NLO, Phys. Rev. D 82, 074011 (2010) Tune 4C, N_{mpi} ≥ 20 0.05 Tune 4C. w/o CR 0.3 RR=1.5)/(RR=0.0) $(p+p)/(\pi^{+}+\pi^{-})$ 0.2 ٥ $(2 \times \phi) / (\pi^{+} + \pi^{-})$ $(\Lambda + \overline{\Lambda})/(2 \times K_{\circ}^{0})$ ቍ $(K^{+}+K^{-})/(\pi^{+}+\pi^{-})$ $\dot{\mathbf{x}}$ p_ (GeV/c) A. Ortiz Velasquez et al., 0.8 Phys. Rev. Lett. 111 (2013) 042001 0.7F *p*_т (ĞeV/*c*)

Summary and Outlook

- Reconnection well established, from $B \rightarrow J/\psi$ to $\langle p_{\perp} \rangle (n_{ch})$.
- Missed chance for clean tests at LEP 2.
- Multitude of algorithms for $P_{YTHIA} 6 \Rightarrow$ uncertainty band.
- Predict (possibility of) significant effects on $m_{\rm t}$.
- To do: develop new reconnection algorithms in Pythia8.
- Want more detailed understanding of space-time picture combined with colour algebra.
- High string density will preclude any definitive answers?
- Breakthrough from new precision differential data?
- Far future: high-luminosity e⁺e⁻ collider?

Summary and Outlook

- Reconnection well established, from $B \rightarrow J/\psi$ to $\langle p_{\perp} \rangle (n_{ch})$.
- Missed chance for clean tests at LEP 2.
- Multitude of algorithms for $\mathrm{Pythia}~6 \Rightarrow$ uncertainty band.
- Predict (possibility of) significant effects on $m_{\rm t}$.
- To do: develop new reconnection algorithms in Pythia8.
- Want more detailed understanding of space-time picture combined with colour algebra.
- High string density will preclude any definitive answers?
- Breakthrough from new precision differential data?
- Far future: high-luminosity e⁺e⁻ collider?

Addendum: new CMS PAS TOP-13-007, "Study of the underlying event, b-quark fragmentation and hadronization properties in $t\bar{t}$ events" shows colour reconnection impact on underlying activity

as function of $p_{\perp t\bar{t}}$ and $\phi_{t\bar{t}}$.

Let's aim for more than a flying circus ...

