Hadronic final states in high- p_T QCD at CDF

Keith Matera

From the University of Illinois at Urbana-Champaign for the CDF collaboration

ISMD, September 16-20, 2013 Chicago, Illinois

Agenda

- Tevatron / CDF
 - A brief refresher
- Prompt y plus heavy flavor production
 - Is a clean probe to test QCD predictions
 - Describes background for searches with final state γ +*b/c*
- W/Z plus heavy flavor
 - Probes the quark content of the proton
 - Tests models of QCD fragmentation
- Will present:
 - Recent results from CDF, comparison with predictions, and interpretations

Tevatron

• Collided $p\overline{p}$ bunches at $\sqrt{s}=1.96$ GeV through 30/09/2011

(Also ran at √s=300, 900 MeV near end of operation: talks later this week!)

- Peak luminosity ~3-4 x 10³² cm⁻² s⁻¹
- ~5M pp collisions per second!

The Tevatron delivered ~12 fb⁻¹

• Up to ~10 fb⁻¹ recorded by each experiment

 Lots of data for exploring hadron interactions and QCD physics (among other physics!)

16/9/2013

CDF is a multi-purpose detector

- Excellent tracking enables heavy flavor identification
- Calorimeters used to identify photons, charged leptons
- Muon drift chambers used to identify highlypenetrating particles

Prompt γ plus heavy flavor production probes QCD processes

• For $p_T(\gamma) < 70 \text{ GeV}$, these events are produced in QCD primarily as $g+Q \rightarrow \gamma+Q$, (q=b,c). At high $p_T(\gamma)$, primarily as $q+\overline{q} \rightarrow \gamma+g(\rightarrow QQ)$.

 These events act as a direct test of γ+b/c production. They also probe parton fractions and momentum transfer scales in hardscattering QCD sub-processes.

16/9/2013

Cross sections for $\gamma + h.f.$ (and *W*/*Z* + *h.f.*) are small

- This makes these measurements challenging
- It also means that understanding these processes is necessary for for high-precision tests of EWK and QCD theory

16/9/2013

CDF identifies prompt γ plus h.f. with a three-part procedure [PRL 111.042003 (2013)]

- Photons reconstructed in calorimeter
 - Separated from jets with isolation cuts and a neural network (isolation, shower shape and HAD/EM fractions)
- Jets are identified
 - Jet acceptance requires cuts on E_T , $|\eta|$
 - Light jets suppressed with b-tagger (looks at impact parameters, Lxy, & secondary vertex properties)
- The invariant mass of the jet's secondary vertex, M_{SecVtx}, is fit with templates to determine relative fractions of b, c and light jets

The analysis makes differential crosssection measurement $d\sigma(\gamma+b)/dp_T(\gamma)$

■ Measured cross-sections are in agreement with NLO QCD predictions up to $p_{\tau} \approx 70$ GeV, but disagree for large p_{τ}

• k_{τ} -factorization and SHERPA agree reasonably well with data

16/9/2013

Finds the same trends in differential cross-section $d\sigma(\gamma+c)/dp_T(\gamma)$

•Pythia with doubled $g \rightarrow (cc/bb)$ rate better describes these shapes

• Suggests that higher-order perturbative QCD corrections are needed in the high- p_T region (dominated, recall, by $q+q->\gamma+g(\rightarrow bb)$)

W/Z plus heavy flavor production is also a good probe of QCD...

First-order production is sensitive to HF content of the proton

Provides stringent test of perturbative QCD calculations

16/9/2013

CDF made a recent observation of $p\bar{p} \rightarrow W + c$ production [PRL 110, 071801]

- First, identify W/Z events
 - High-E_T charged lepton
 - Missing energy
- Then, tag charm jets
 - Require an electron or muon from charm-hadron semi-leptonic decay within the jet (soft lepton tagging)
 - Count events with W lepton and soft lepton same sign (N_{SS}), and opposite sign (N_{OS})
 - Subtract N_{OS}-N_{SS} to suppress background and measure $p\bar{p} \rightarrow W + c$

16/9/2013

Results of this work are in agreement with theory

- Measure cross-section times branching fraction $\sigma(p\bar{p} \rightarrow W + c) \times Br(W \rightarrow \ell \nu) = 13.3^{+3.3}_{-2.9} \text{ pb (stat + syst)}$
- Compatible with theoretical NLO prediction $\sigma_{NLO}(p\overline{p} \rightarrow W + c) \times Br(W \rightarrow \ell v) = 11.3 \pm 2.2 \text{ pb}$

• This work is notable as being the first Tevatron measurement of specific charm process $p\overline{p} \rightarrow W+c$

There is an updated measurement of Z+b in 9.1 fb⁻¹ [CDF Public note 10594]

Measures differential cross-section dσ(Z+b jet)/dp_T(jet)

Integrated cross-sections:

$$\frac{\sigma_{Z_bjet}}{\sigma_Z} = 0.261 \pm 0.023^{stat} \pm 0.029^{syst}\%$$

$$\frac{\sigma_{Z_bjet}}{\sigma_{Zjet}} = 2.08 \pm 0.18^{stat} \pm 0.27^{syst}\%$$

To compare with NLO prediction with MCFM:

	$Q^2 = m_Z^2 + p_{T,Z}^2$	$Q^2 = < p_{T,jet}^2 >$
$\frac{\sigma_{Z_bjet}}{\sigma_{Z}}$	0.23 %	0.29 %
$\frac{\sigma_{Z_{bjet}}}{\sigma_{Zjet}}$	1.8 %	2.2%

• Differential cross-section is higher than predicted at low p_T , but cross-section overall shows good agreement with theory.

16/9/2013

CDF is also exploring a new approach to *W*/*Z*+*h.f.* analysis

- This approach explores a different kinematic regime, making it complementary to previous studies
- It involves fully reconstructing the charmed meson in $W/Z+c(\rightarrow D^*)$ events
 - Begin with standard selection of W/Z events
 - Use vertex fitting to reconstruct decay $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$
 - Cut on track kinematics and reconstructed *D*⁰ mass
 - Bin $\Delta m = m(K\pi\pi) m(K\pi)$ of remaining candidates
 - Fit Δm distribution to hypothesis of signal plus background
- ATLAS and CMS have used this charm-tagging procedure in high-*E*_T jet events, but this is its first application to *W*/*Z*+*c* studies at Tevatron!

This technique probes a lower $p_T(c)$ regime than do jet-based analyses

- Running over PYTHIA $p\bar{p} \rightarrow W + c$ events shows that the p_T spectrum of tagged events strongly favors the < 20 GeV regime
- This provides a probe of unexplored territory in QCD!
- Is complementary to jetbased W+c analyses
- This technique also selects D* from W+b, where b→B→D*+X. Can use lifetime information to separate prompt D* from secondary D*.

It's been used to identify $W(\rightarrow/\nu)+D^*$ and $Z(\rightarrow/+/)+D^*$ events in 9.7 fb⁻¹

This work is ongoing. Aim to finalize results and compare to theory soon.

16/9/2013

Summary

- Exciting time for EWK gauge boson plus h.f. physics
- Results suggest that *c,b* fractions in γ +*jets* may be higher than NLO predictions; supports higher $g \rightarrow cc/bb$ fractions
- CDF is probing new h.f. regimes: low $p_T(c)$ in W/Z events
- Higher statistics at LHC will extend these measurements in complementary kinematic regions
- Improved W/Z/γ+heavy flavor models will benefit future analyses, especially as a model of background

Further Reading

 All results discussed in this talk are available on the CDF Public Results page:

http://www-cdf.fnal.gov/physics/new/qcd/QCD.html