

Measurement of the charged kaon correlations at small relative momentum in the SELEX experiment

Grigory Nigmatkulov (National Research Nuclear University "MEPhI") on behalf of the SELEX collaboration

XLIII International Symposium on Multiparticle Dynamics (ISMD2013) September 15-20, 2013 Illinois Institute of Technology, Chicago, IL

Correlation femtoscopy: QS momentum correlations

• Two-particle correlation function:

$$C_{2}(p_{1}, p_{2}) = \frac{P(p_{1}, p_{2})}{P(p_{1})P(p_{2})}$$

Experimentally: $C_2(Q) = \frac{A(Q)}{P(Q)}$

$$A(Q)$$
 – pair 4-momentum
difference from the same event
contain BE correlations)

B(Q) – pairs from different events (BE correlations are absent)

Physical motivations:

- Study of spacetime characteristics of the particle production in elementary particle collisions
- Comparison of source parameters depending from the initial state:
 - 3 beam types
 - study of the beam particle fragmentation $k_T = \frac{\left|\vec{p}_{T1} + \vec{p}_{T2}\right|}{r}$
- k_T dependences:
 - collective behavior
 - cleaner signal due to small contribution from the resonance decays

ISMD2013, Chicago, IL Sep. 17th, 2013

SEgmented LargE X_F baryon spectrometer (E-781)

- 600 GeV/c Σ- and πbeams
 - 540 GeV/c *p* beam
- Copper and carbon composite target with 5% of an interaction length for protons
- $\sim 10^9$ trigger events
- Momentum resolution:
 - $\sigma_{\!p}\!/p_z\!\!\approx\!\!1\%$ and $\sigma_{\!p}\!/p_t\!\!\approx\!\!0.5\%$

ISMD2013, Chicago, IL Sep. 17th, 2013

Charged particle identification

Beam TRD

Ring Imaging Cherenkov detector

Particle selection

- Primary tracks
- Distance of closest approach between reconstructed track and primary vertex $< 20 \ \mu m$
- $46 \le P \le 160 \text{ GeV/c}$
- Track has segments in the vertex detector and in forward PWC
- Particle was identified as a kaon in RICH detector

Correlation function parametrization:

- Correlation functions are fitted by a single-Gaussian (Goldhaber paremetrization): $C_2(Q) = N(1 - \lambda + \lambda K(Q)e^{-R^2Q^2})B(Q)$
- λ strength of the correlations
- R size of the emission source
- *K(Q)* is the Coulomb function integrated over a spherical source of 1 fm. M. Bowler, Phys. Lett.B 270,69(1991)

Y.Sinyukov, R.Lednicky, S.V.Akkelin, J.Pluta, B.Erazmus, Phys. Lett.B 432,248(1998)

- *B(Q)* "baseline", takes into account all non-femtoscopic correlations, including the long-range correlations due to energy-momentum conservation.
- Baselines are fitted by a standard 2nd order polynomial:

$$B(Q) = 1 + a Q + b Q^2$$
 Phys.Rev.D85:074023,201

• In order to obtain systematic errors other functions with derivatives equal to zero at Q = 0 were used: $B(Q) = \sqrt{1 + aQ + bQ^2}$

$$B(Q) = 1 + e^{-aQ}$$

ISMD2013, Chicago, IL Sep. 17th, 2013 Grigory Nigmatkulov (on behalf of the SELEX collaboration) 2

Correlation functions

Sep. 17th, 2013

(on behalf of the SELEX collaboration)

Dependence of the emission source parameters on the target material

Beam type	Target material	K^+K^+		K-K-	
		λ	R [fm]	λ	R [fm]
Σ-	Cu+C	$0.77 \pm 0.02 \pm 0.09$	$1.18 \pm 0.03 \pm 0.06$	$0.65 \pm 0.02 \pm 0.04$	$1.23 \pm 0.02 \pm 0.04$
	Си	$\boldsymbol{0.77 \pm 0.03}$	1.19 ± 0.03	0.65 ± 0.02	1.24 ± 0.02
	С	$\boldsymbol{0.77 \pm 0.04}$	1.16 ± 0.04	0.64 ± 0.02	1.28 ± 0.03
π-	Cu+C	$0.48 \pm 0.05 \pm 0.06$	$0.99 \pm 0.06 \pm 0.03$	$0.69 \pm 0.05 \pm 0.06$	$1.21 \pm 0.05 \pm 0.05$
	Си	$\boldsymbol{0.50\pm0.07}$	1.03 ± 0.08	0.69 ± 0.06	1.26 ± 0.07
	С	0.52 ± 0.09	0.91 ± 0.08	$\boldsymbol{0.67 \pm 0.07}$	1.15 ± 0.07
р	Cu+C	$0.92 \pm 0.13 \pm 0.12$	$1.31 \pm 0.09 \pm 0.08$	$0.78 \pm 0.14 \pm 0.09$	$1.42 \pm 0.13 \pm 0.08$
	Си	0.84 ± 0.15	1.19 ± 0.11	$\boldsymbol{0.86 \pm 0.17}$	1.35 ± 0.13
	С	1.01 ± 0.24	1.47 ± 0.18	$\boldsymbol{0.75\pm0.31}$	1.71 ± 0.37
ISMD2013, Ch Sep. 17th. 2013	nicago, IL 3	Grigory Nigmatl (on behalf of the	kulov SELEX collaboration)		10

(on behalf of the SELEX collaboration)

Pair k_T dependence of the emission source parameters

 K^+K^+ K-Kk_⊤<0.25 0.25<k₊<0.5 0.5<k₊<0.65 k_⊤<0.25 0.25<k₊<0.5 0.5<k₊<0.65 k_⊤<0.25 0.25<k₊<0.5 0.5<k₊<0.65 k_⊤<0.25 0.25<k₊<0.5 0.5<k₊<0.65 0.25<k_<0.5 0.5<k₊<0.65 0.25<k_<0.5 k_∓<0.25 k₊<0.25 0.5<k_<0.65 0.5 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 09 01 0.9 0 $Q(K^+K^+)$ [GeV] $Q(K^{-}K^{-})$ [GeV] ISMD2013, Chicago, IL Grigory Nigmatkulov 11 Sep. 17th, 2013 (on behalf of the SELEX collaboration)

Pair k_T dependence of the emission source parameters

ISMD2013, Chicago, IL Sep. 17th, 2013

Pair k_T dependence of the emission source parameters

Beam type	Pair k _T [GeV]	K^+K^+		K-K-	
		λ	R [fm]	λ	R [fm]
Σ-	0.00-0.25	$0.78 \pm 0.06 \pm 0.09$	$1.31 \pm 0.05 \pm 0.08$	$0.71 \pm 0.03 \pm 0.03$	$1.33 \pm 0.03 \pm 0.04$
	0.25-0.50	$0.76 \pm 0.04 \pm 0.09$	$1.13 \pm 0.04 \pm 0.05$	$0.65 \pm 0.02 \pm 0.04$	$1.26 \pm 0.03 \pm 0.04$
	0.50-0.65	$0.96 \pm 0.05 \pm 0.06$	$0.98 \pm 0.05 \pm 0.03$	$0.58 \pm 0.04 \pm 0.03$	$0.97 \pm 0.04 \pm 0.03$
π-	0.00-0.25	$0.53 \pm 0.08 \pm 0.06$	$1.11 \pm 0.09 \pm 0.03$	$0.62 \pm 0.08 \pm 0.06$	$1.29 \pm 0.10 \pm 0.07$
	0.25-0.50	$0.54 \pm 0.09 \pm 0.07$	$0.95 \pm 0.08 \pm 0.02$	$0.78 \pm 0.07 \pm 0.05$	$1.22 \pm 0.07 \pm 0.04$
	0.50-0.65	$0.32 \pm 0.17 \pm 0.09$	$0.83 \pm 0.26 \pm 0.12$	$0.71 \pm 0.15 \pm 0.07$	$0.95 \pm 0.09 \pm 0.01$
р	0.00-0.25	$0.95 \pm 0.23 \pm 0.11$	$1.47 \pm 0.19 \pm 0.11$	$1.02 \pm 0.33 \pm 0.09$	$1.69 \pm 0.31 \pm 0.20$
	0.25-0.50	$0.85 \pm 0.18 \pm 0.11$	$1.21 \pm 0.15 \pm 0.07$	$0.76 \pm 0.19 \pm 0.09$	$1.33 \pm 0.15 \pm 0.06$
	0.50-0.65	$0.70 \pm 0.43 \pm 0.13$	$0.97 \pm 0.19 \pm 0.04$	$0.34 \pm 0.31 \pm 0.13$	$1.13 \pm 0.61 \pm 0.12$

Summary

- Kaon-kaon correlations at small relative momentum are measured in the SELEX experiment
- No dependence of the emission source parameters on the target material (*C* and *Cu*) was observed
- For all beam types (Σ⁻, π⁻, p) the decreasing of the emission source radii R with the pair k_T was observed
- Outlook
 - Study the dependence of the emission source parameters on Feynman scaling variable
 - Study of the 3D kaon-kaon correlation functions vs k_T and vs x_F