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Understanding the QCD phase diagram means understanding st rongly
interacting matter under extreme conditions ( T , density, etc.. )

• Are quarks and gluons confined forever?

• What is the fate of chiral symmetry breaking?

• Is there any true phase transition where thermodynamics sho ws a critical behav-

ior? (Diverging correlation lengths, latent heat, etc. )

• What are the properties of the new possible phases?

Such questions are fundamental for various fields, includin g astrophysics and cos-

mology, and are the primary motivation for heavy ion collisi on experiments.

• Most interesting things happen at a scale ( . GeV) where the QCD coupling is large

and perturbation theory fails.

• One of the best known approaches is then to compute it numeric ally: Lattice QCD

(see talk by Jan Pawlowski for analytic approaches)



LATTICE QCD IN BRIEF

The starting point is the path-integral approach to Quantum Me-

chanics and Quantum Field Theory, opened by R. Feynman in 194 8.
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The QCD path integral is discretized on a finite space-time la ttice

=⇒ finite number of integration variables

For QCD, integration variables are 3 × 3 unitary matrices, Uµ(n),

living on lattice links (elementary parallel transporters )

(K.G. Wilson, 1974)

The path-integral is then computed by Monte-Carlo algorith ms

which sample field configurations proportionally to e−S[U ]
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1

Z

∫

DUe−S[U ]O[U ] ≃ Ō =
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The thermal QCD partition function is naturally rewritten i n terms of an Euclidean

path integral with a compactified temporal extension
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(

∑

f

ψ̄fi
(

Dµ
ijγ

E
µ +mfδij

)

ψfj +
1

4
Ga
µνG

µν
a

)

→ ψ̄M [U ]ψ+SG[U ]

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒
∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

As long as DUe−SG detM [U ] is positive, it can be interpreted as a probability dis-

tribution DUP [U ] over gauge link configurations, which can be sampled by prope r

algorithms
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1

τ
=
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Nta(β,m)

τ is the extension of the compactified time

Sample averages give access to equilibrium properties (energy density, specific heat, etc.)

To understand the nature of phase transitions, we study diff erent growing spatial

sizes and look for possible singularities in the infinite vol ume limit: finite size scaling

Uncertainties

• statistical: finite sample, error ∼ 1/
√

sample size.

• systematic: finite box size L, finite lattice spacing a, unphysical quark masses.

Given enough computer power, uncertainties can be kept unde r control. Different

groups, adopting different discretizations, converge to c onsistent results.

Projects employing L ≫ 1 fm, a well below 0.1 fm and physical quark masses, re-

quire more than 100 Teraflop*year (almost 1022 floating point operations)



Finite T transition

Clear evidence for deconfinement is obtained both in the pure gauge theory (quenched

approximation) and in presence of dynamical fermions
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Taken from O. Kaczmarek, F. Karsch, E. Laermann and M. Lutgem eier, Phys. Rev. D 62, 034021 (2000)

The confining potential which is present at low T , disappears at high T .



The liberation of color degrees of freedom is clearly visibl e in thermodynamical quan-

tities and coincides with chiral symmetry restoration.

energy density u/d and s number fluctuations chiral condensate
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Temperature and nature of the transition

S. Borsanyi et al. JHEP 1009, 073 (2010) Tc = 155(6) MeV (stout link stag. discretization, amin ≃ 0.08 fm)

A. Bazavov et al., PRD 85, 054503 (2012) Tc = 154(9) MeV (HISQ/tree stag. discretization, amin ≃ 0.1 fm)

No exact symmetries are known for QCD. Then, it is not granted that a true transition takes place

Indeed the physical point is consistent with a crossover (no discontinuity) (Aoki et al., Nature 443, 675

(2006)): either the transition is extremely weak (hence not phenome nologically relevant) or absent



However, we can play as God, and change the quark mass spectru m (almost) at will

One can thus study the nature of the transition as a function o f u/d, s quark masses
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⇐= COLUMBIA PLOT

A true, first order transition is present for

very light or very heavy quark masses

Unsettled issues in the chiral limit of Nf = 2: 2nd order or first order?

(Bonati, Cossu, M.D., Di Giacomo, Pica, ’05, ’07; Bonati, M. D., de Forcrand, Philipsen, Sanfilippo, ’11)



The QCD phase diagram: not just temperature ...

(quark masses, background fields, ...)
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What we would like to know:

• Location and nature of deconfinement/chiral symmetry resto ration as a function

of other external parameters ( µB , external fields, ...)

• Properties of the various phases of strongly interacting ma tter



Moving to finite baryon density
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If no transition at µB = 0 at the physi-

cal point, and if the transition is first order

at large µB , a critical (second order) end-

point is expected in the T, µB plane.

It would have clear experimental signa-

tures: critical fluctuations (M. A. Stephanov,

K. Rajagopal and E. V. Shuryak, PRL 81, 4816 (1998))

How is that expected to happen? The commonly accepted scenar io is that:
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The first order region present for µB = 0

and small quark masses (Columbia plot)

grows as µB grows, crossing the physical

point at the critical endpoint.

The critical endpoint is a ”chiral” critical

endpoint in this scenario



Problems in lattice QCD at µB 6= 0

Z(µB , T ) = Tr
(

e−
HQCD−µBNB

T

)

=

∫

DUe−SG[U ] detM [U, µB ]

detM [µB] complex =⇒ Monte Carlo simulations are not feasibile.

This is usually known as the sign problem .

We can then rely on a few approximate methods, viable only for small µB/T , like

• Taylor expansion of physical quantities around µ = 0

Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2 003

• Reweighting (complex phase moved from the measure to observables)

Barbour et al. 1998; Z. Fodor and S, Katz, 2002

• Simulations at imaginary chemical potentials (plus analytic continuation)

Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2 002; M.D’E., Lombardo 2003.



An example: the critical line Tc(µB)

Comparison of various methods to extract

Tc(µB)/Tc(0) as a function of µB (4 stag. flavors)

S. Kratochvila and P. de Forcrand, PoS LAT2005 (2006) 167;

P. Cea, L. Cosmai, M. D’E., A. Papa, PRD 81, 094502 (2010).

Various different methods agree for the curvature

∂T/∂µ2 of the critical line at µ2 = 0.

In more physical cases we obtain for the curvature Tc(µq)/Tc(0) = 1 − A
(

µq

T

)2

• A = 0.051(4) (Nf = 2, mπ ∼ 280 MeV, analytic cont., de Forcrand, Philipsen, hep-lat/0205016 )

• A = 0.052(2) (as above, mπ ∼ 400 MeV Cea, Cosmai, D’E., Papa, Sanfilippo, arXiv:1202.5700 )

• A = 0.059(2)(4) (Nf = 2+1, chiral+continuum limit, Taylor, O. Kaczmarek et al. arXiv:1011.3130 )

• A = 0.07-0.09 (Nf = 2 + 1, physical point, Taylor, G. Endrodi et al. arXiv:1102.1356 )

However, systematics get out of control at larger µB , with large uncertainties regard-

ing the location and the very existence of a possible QCD crit ical endpoint.



A different question: if the critical endpoint exist, is it c hiral?
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Simulations at imaginary chemical poten-

tial (µ2 < 0) predict instead that the first

order region shrinks for µ2 > 0.

P. de Forcrand and O. Philipsen, JHEP 0701, 077

(2007), JHEP 0811, 012 (2008).



This has been recently reinterpreted in terms of the general structure of the phase

diagram at µ2 < 0 (M. D’E., F. Sanfilippo, Phys. Rev. D80, 111501 (2009); P. de F orcrand, O. Philipsen, PRL

105 (2010) 152001; C. Bonati, G. Cossu, M. D’E., F. Sanfilippo , Phys. Rev. D83, 054505 (2011))
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• At µ/T = iπ/3 QCD has an exact Z2 symmetry (similar to charge conjugation) which sponta-

neouly breaks at Tc. The transition must be first or second order, with tricritic al points inbetween.

• The conjecture is that such phase structure propagates up to µ = 0, i.e. that the ”Columbia plot”

originates from it. No relation would then exist between the first order regions in the Columbia plot

and a possible endpoint at real µ.

• The conjecture can be completely verified for µ2 < 0. In this way one can also approach issues

like the order of the chiral transition for Nf = 2 QCD (C. Bonati, P. de Forcrand, M. D’E., O. Philipsen

and F. Sanfilippo, arXiv:1201.2769 and in progress)



This has been recently reinterpreted in terms of the general structure of the phase

diagram at µ2 < 0 (M. D’E., F. Sanfilippo, Phys. Rev. D80, 111501 (2009); P. de F orcrand, O. Philipsen, PRL

105 (2010) 152001; C. Bonati, G. Cossu, M. D’E., F. Sanfilippo , Phys. Rev. D83, 054505 (2011))

endpoint

µ2

µ  > 02

LINE
RW

µ  < 0

(µ/Τ)   =
− (π/3)

2

2µ  < 0

2 1st order m t1 1st orderm t2

mc

point
physical mq

2nd order

region

chiral

1st order
region

1st order quenched

lines of critical points

region?
1st order
non−chiral

critical
0

  ∞

(µ/T)2

0
  ∞

(µ/T)2

0
  ∞

(µ/T)2

-(π/3)2-(π/3)2-(π/3)2-(π/3)2-(π/3)2-(π/3)2-(π/3)2-(π/3)2-(π/3)2

ms

mu,d

❶

❸ ❸

❷
❷

❂

mu,d
ms

mu,d

❶

❸ ❸

❷
❷

❂

mu,d

• At µ/T = iπ/3 QCD has an exact Z2 symmetry (similar to charge conjugation) which sponta-

neouly breaks at Tc. The transition must be first or second order, with tricritic al points inbetween.

• The conjecture is that such phase structure propagates up to µ = 0, i.e. that the ”Columbia plot”

originates from it. No relation would then exist between the first order regions in the Columbia plot

and a possible endpoint at real µ.

• The conjecture can be completely verified for µ2 < 0. In this way one can also approach issues

like the order of the chiral transition for Nf = 2 QCD (C. Bonati, P. de Forcrand, M. D’E., O. Philipsen

and F. Sanfilippo, arXiv:1201.2769 and in progress)



Another extension of the phase diagram:

Strong interactions in strong magnetic fields

- in non-central heavy ion collisions, largest mag-

netic fields ever created ( B up to 1015 Tesla at LHC)

- possible strong fields in the early Universe, at the

time of the QCD transition ( B up to 1016 Tesla)

Many new phenomena are predicted, going from the chiral magn etic effect (CME) to

a modification of the phase transition and of the thermal medi um

• How does Tc depend on B? Does the nature of the transition change?

• Do chiral symmetry restoration and deconfinement get disent angled?

• Is strongly interacting matter diamagnetic or paramagneti c?

All these issues are perfectly explorable. Just place an add itional U(1) background

field in the covariant derivative, no sign problem for purely magnetic fields.



Many studies have explored the phase transition in the prese nce of a magnetic field

(M. D’E., S. Mukherjee, F. Sanfilippo, PRD 82, 051501 (2010); G. S. Bali et al, JHEP 1202, 044 (2012); E. -M. Ilgenfritz

et al., PRD 85, 114504 (2012))

STATUS

Deconfinement and chiral symmetry restoration

stay entangled (at least for eB up to 1 GeV 2).

The transition moves to lower T as B increases, it

becomes sharper

from G. S. Bali et al., JHEP 1202, 044 (2012)

e.m. fields, even if directly coupled to quarks, can strongly affect gluodynamics.

Large effects on gluon field distribution (M. D. and F. Negro, PRD 83, 114028 (2011)); Large effects on the action

density ((E. -M. Ilgenfritz et al., PRD 85, 114504 (2012)); G. S. Bali et al., PRD 86, 094512 (2012); JHEP 1304, 130

(2013)) and likely on the gluon condensate; possible generation of e ffective θ term in the presence of CP -odd

e.m. backgrounds (M. D., M. Mariti and F. Negro, PRL 110, 082002 (2013))



Magnetic susceptibility of strongly interacting matter
C. Bonati, M. D., M. Mariti, F. Negro and F. Sanfilippo, arXiv: 1307.8063
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• The idea is to determine the B-dependent part of the free ener gy density, ∆f(B).

Ultraviolet divergences cured by subtracting T = 0 contributions, then

∆f(B) = −χ̃B2/2µ0 + O(B4) we can determine the magnetic susceptibility.

• RESULT: the QGP is strongly paramagnetic (compare, e.g., χ̃ ≃ 2.8 × 10
−4 for Platinum)

Confirmed by other studies (L. Levkova, C. DeTar, arXiv:1309.1142; G. Endrodi, talk at Lattice 2013)

• Future studies should better resolve the region around Tc: presently χ̃ vanishes

within errors below Tc.



CONCLUSIONS AND REFLECTIONS

• Present computational resources permit to obtain consiste nt and reliable predic-

tions about the phase diagram of QCD and the properties of str ongly interacting

matter at finite T and in presence of external sources such as magnetic back-

ground fields

• Some cases exist where we still do not have full control over s ystematic errors,

like QCD at large baryon density or the computation of transport properties, where

major progress could be achieved by future breakthroughs.

• Of course, a full theoretical comprehension of the phase dia gram, and of QCD

in general, will require to understand not only when and how q uarks and gluons

confine/deconfine, but also what is the physical mechanism at the basis of color

confinement and what its relation to chiral symmetry breakin g.


