Search for Exotic Gluonic States In the Nucleus

J. Maxwell

with W. Detmold, R. Jaffe, R. Milner, P. Shanahan

EIC User Group Meeting July 8th, 2016

Outline

 Double Helicity Flip Structure Function Measurement Approaches
 Jefferson Lab Measurement JLab Polarized Target
 Gluonometry at the EIC Polarized Ion Beams

Outline

 Double Helicity Flip Structure Function Measurement Approaches
 Jefferson Lab Measurement JLab Polarized Target
 Gluonometry at the EIC Polarized Ion Beams

Double Helicity Flip Structure Function $\Delta(x, Q^2)$

- Δ(x, Q²) corresponds to helicity amplitude A_{+-,-+}
- Photon helicity flip of two
- Unavailable to bound nucleons or pions in the nucleus
- Virtual ρ or Δ ? Gluons not associated with a nucleon?

- New lattice QCD result for first moment of $\Delta(x,Q^2)$ in a ϕ meson is preliminary, but very promising^1
- Primary challenge of measurement is polarized target or source

¹Detmold, Shanahan, arXiv:1606.04505

Where do we start looking?

Measuring $\Delta(x,Q^2)$ via DIS

- Transversely aligned, spin-1 target and unpolarized electron incident from $-\boldsymbol{z}$
- In the Bjorken limit, double helicity component of the hadronic tensor $W^{\Delta=2}_{\mu\nu,\alpha\beta}(E,E')$ becomes (dropping higher twist structure functions)¹:

$$\lim_{Q^2 \to \infty} \frac{d\sigma}{dx \, dy \, d\phi} = \frac{e^4 M E}{4\pi^2 Q^4} \left(xy^2 F_1(x, Q^2) + (1-y) F_2(x, Q^2) - \frac{x(1-y)}{2} \Delta(x, Q^2) \cos 2\phi \right)$$

¹Jaffe, Manohar, Phys Letters B 223 (2) (1989).

For a spin-1 target polarized at angle θ_m from the *z*-axis and electron incident from -z, target spin $\lambda_m = (1, 0, -1)$:

$$\frac{d\sigma}{dx\,dy\,d\phi}(\lambda_m) = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{2}{3}a_mb_1 + \frac{1-y}{xy^2}\left(F_2 + \frac{2}{3}a_mb_2\right) - \frac{1-y}{y^2}c_m\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

with

$$a_m = \frac{1}{4}c_m(3\cos^2\theta_m - 1)$$
$$c_m = 3|\lambda_m| - 2$$

Differences of cross sections: N_+, N_0, N_- for $\lambda_m = (1, 0, -1)$

For a spin-1 target polarized at angle θ_m from the *z*-axis and electron incident from -z, target spin $\lambda_m = (1, 0, -1)$:

$$\frac{d\sigma}{dx\,dy\,d\phi}(\lambda_m) = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{2}{3}a_mb_1 + \frac{1-y}{xy^2}\left(F_2 + \frac{2}{3}a_mb_2\right) - \frac{1-y}{y^2}c_m\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

with

$$a_m = \frac{1}{4} c_m (3\cos^2 \theta_m - 1)$$

$$c_m = 3|\lambda_m| - 2 \quad \Rightarrow \quad c_m = (1, -2, 1)$$

Differences of cross sections: N_+, N_0, N_- for $\lambda_m = (1, 0, -1)$

Average over Polarization: $N_+ + N_- + N_0 \Rightarrow \bar{\sigma}$

•
$$c_+ + c_0 + c_- = 0$$

$$\frac{d\bar{\sigma}}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2}\left(F_1 + \frac{1-y}{xy^2}F_2\right)$$

- Of course, no Δ dependence
- Δ also cancels out of vector polarization difference $(N_+ - N_0) + (N_0 - N_-) = N_+ - N_-$ • $c_+ - c_- = 0$

Measurement Approaches

Tensor Polarization: $(N_+ - N_0) - (N_0 - N_-) \Rightarrow \Delta \sigma$

•
$$c_+ - 2c_0 + c_- = 6$$

$$\frac{d\Delta\sigma}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left((3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2} 6\sin^2\theta_m \Delta(x, Q^2)\cos(2\phi) \right)$$

- Tensor structure functions b_1 , b_2 contribute significantly
- Unless! $(3\cos^2\theta_m 1) = 0 \Rightarrow \theta_m = 54.7^\circ$

Measurement Approaches

Tensor Polarization:
$$(N_+ - N_0) - (N_0 - N_-) \Rightarrow \Delta \sigma$$

•
$$c_+ - 2c_0 + c_- = 6$$

$$\frac{d\Delta\sigma}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left((3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2} 6\sin^2\theta_m \Delta(x, Q^2)\cos(2\phi) \right)$$

- Tensor structure functions b_1 , b_2 contribute significantly
- Unless! $(3\cos^2\theta_m 1) = 0 \Rightarrow \theta_m = 54.7^\circ$

Measurement Approaches

Difference of Polarized and Unpolarized: $N_{+} - \bar{N} = N_{+} - \frac{1}{3}(N_{+} + N_{-} + N_{0}) = \frac{1}{3}(N_{+} - N_{0}) \Rightarrow \hat{\sigma}$

• $c_+ - c_0 = 1$

$$\frac{d\hat{\sigma}}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left(\frac{1}{6}(3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

• Again tensor structure functions b_1 , b_2 contribute significantly unless $\theta_m = 54.7^{\circ}$

Measurement Approaches

3 ways to measure $\Delta(x,Q^2)$

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

- ${\rm \textcircled{O}}$ Leverage $\cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence
 - Need azimuthal detector acceptance
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Change polarization to produce N_+ , N_- and N_0 yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

Measurement Approaches

3 ways to measure $\Delta(x,Q^2)$

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

- ${\rm (I)}\ {\rm Leverage}\ \cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence
 - Need azimuthal detector acceptance
- **②** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Change polarization to produce N_+ , N_- and N_0 yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

Measurement Approaches

3 ways to measure $\Delta(x, Q^2)$

$$\underbrace{(3\cos^2\theta_m = 1)\left(b_1 \pm \frac{1-y}{xy^2}b_2\right)}_{yy^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

() Leverage $\cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence

Need azimuthal detector acceptance

2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$

- $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
- Change polarization to produce N_+ , N_- and N_0 yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

Measurement Approaches

3 ways to measure $\Delta(x, Q^2)$

$$\underbrace{(3\cos^2\theta_m = 1)\left(b_1 \pm \frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

() Leverage $\cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence

- Need azimuthal detector acceptance
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Change polarization to produce N_+ , N_- and N_0 yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

Outline

 Double Helicity Flip Structure Function Measurement Approaches
 Jefferson Lab Measurement JLab Polarized Target
 Gluonometry at the EIC Polarized Ion Beams

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

1 Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target field at $\theta_m = 54.7^{\circ}$
 - Yields at N_+ , N_- and N_0 separated in time: systematic headaches
- Over the section of the section o
 - Set target field at $\theta_m = 54.7^\circ$, vector polarization easier
 - Lose advantage of asymmetry, systematic headaches

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

① Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B

2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$

- Set target field at $\theta_m = 54.7^{\circ}$
- Yields at N_+ , N_- and N_0 separated in time: systematic headaches
- S Vector polarized minus unpolarized cross sections
 - Set target field at $\theta_m = 54.7^\circ$, vector polarization easier
 - Lose advantage of asymmetry, systematic headaches

$$\underbrace{(3\cos^2\theta_m = 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

① Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target field at $\theta_m = 54.7^{\circ}$
 - Yields at N_+ , N_- and N_0 separated in time: systematic headaches
- S Vector polarized minus unpolarized cross sections
 - Set target field at $\theta_m = 54.7^\circ$, vector polarization easier
 - Lose advantage of asymmetry, systematic headaches

$$\underbrace{(3\cos^2\theta_m = 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

① Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B

2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$

- Set target field at $\theta_m = 54.7^{\circ}$
- Yields at N_+ , N_- and N_0 separated in time: systematic headaches
- 3 Vector polarized minus unpolarized cross sections
 - Set target field at $\theta_m = 54.7^{\circ}$, vector polarization easier
 - Lose advantage of asymmetry, systematic headaches

Kinematic Reach with 12 GeV CEBAF in Hall C

- 11 GeV, unpolarized e^- on fixed, polarized ${}^{14}\mathrm{NH}_3$
- Preliminary SHMS Monte Carlo (Gaskell, Arrington)
 - Transverse (not 54.7°!) UVa magnet (M. Jones)

θ	E (GeV)	E' (GeV)	$Q^2~({ m GeV/c^2})$	x	Rate (Hz)
10.5	11	5	1.842	0.164	170
10.5	11	4	1.474	0.112	152
10.5	11	3	1.105	0.074	138
10.5	11	2	0.737	0.044	100
15	11	5	3.748	0.333	28
15	11	4	2.999	0.228	30
15	11	3	2.249	0.15	32
15	11	2	1.499	0.089	34

Transverse (Not Longitudinal) Polarized Target?

- Need a spin ${\geq}1$ nucleus, but this is a nuclear effect
 - Higher atomic number, higher spin more likely to reveal exotic gluonic components
- Deuteron? Expect two nucleons to good approximation
- Something heavier: Li? $\alpha + d$
- Practical limitations from available polarized targets
 - Long history of polarized \boldsymbol{p} and \boldsymbol{d} in solid targets
 - Lithium Hydride and Deuteride: ⁶LiH,⁶LiD, also ⁷LiH
 - Ammonia: ¹⁴NH₃,¹⁴ND₃, also ¹⁵NH₃
- Leverage spin-1 Nitrogen in ¹⁴NH₃
 - Reliable performance in beam
 - Augment polarization via transfer from H to N

JLab Polarized Target

$JLab/UVa \ Solid \ Polarized \ Target$

- Dynamic Nuclear Polarization
 - 5 T field, 1 K 4 He evap. fridge
 - Dope material with paramagnetic radicals (NH₃: NH₂ or H)
 - Leverage e p spin coupling
 - μ -waves drive polarizing transitions
 - e relaxes to flip-flop with new p
- Irradiated Ammonia: 95% p, 40% d
 - Beam current < 100 nA
 - P decay: anneals and replacement
- Workhorse DIS technique at SLAC, JLab; 2012's g_p^2 most recently²

²Pierce, Maxwell, NIM A 738 (2014).

Polarization, Tensor Alignment and DNP

$$P = (N_{+} - N_{0}) + (N_{0} - N_{-})$$

= N_{+} - N_{-}
$$A = (N_{+} - N_{0}) - (N_{0} - N_{-})$$

= 1 - 3N_{0}

- Polarization and alignment can be anywhere in the black triangle
- At *equal spin temperature*, can be only on red curve:

$$A = 2 - \sqrt{4 - 3P^2}.$$

• For
$$P = 40\% \Rightarrow A = 13\%$$

Nitrogen Polarization in Ammonia: Not Easy

• We can also relate polarization of N to p at EST:

$$P_N = \frac{4 \tanh((\omega_N/\omega_p) \operatorname{arctanh}(P_p))}{3 + \tanh^2((\omega_N/\omega_p) \operatorname{arctanh}(P_p))}$$

- At 95% p: 17% N
 - $P_N = 17\% \Rightarrow A_N = 2\%$
- NMR measurement is difficult
 - Peaks too far apart for one NMR scan (2.4 MHz)
 - Overcome at SMC with 2 sweeps, changing B field³

³B. Adeva, NIM A 419 (1998).

Nitrogen Polarization in Ammonia: Not Easy

• We can also relate polarization of N to p at EST:

 $P_N = \frac{4 \tanh((\omega_N/\omega_p) \operatorname{arctanh}(P_p))}{3 + \tanh^2((\omega_N/\omega_p) \operatorname{arctanh}(P_p))}$

• At 95% p: 17% N

•
$$P_N = 17\% \Rightarrow A_N = 2\%$$

- NMR measurement is difficult
 - Peaks too far apart for one NMR scan (2.4 MHz)
 - Overcome at SMC with 2 sweeps, changing B field³

Techniques to Improve P_N, A_N

- Tricks to help: "RF Hole Burning"⁴
 - Vast separation of NMR peaks in N will help.
- Cross Spin Transfer
 - Move magnetic field to allow cross relaxation of resonances
 - SMC: 40% $P_N \Rightarrow 12\% A_N$
- RF Spin Transfer
 - Same effect in the end
 - Allow dynamic pumping of N while μ-waves pump p

⁴P. Delheij, NIM A 251 (1986).

5 T Split-Pair Target Magnet

- Can we get $\theta_m = 54.7^\circ$
- Old Hall C Magnet, with largest opening angles, retired in 2012
 - Better than 10^{-4} uniformity in 3x3x3 cm³ volume
- g_2^p ran with modified Hall B magnet
 - 54.7° not available
 - Alteration needed to get 50°
- New 5 T target magnet needed
 ~\$500k

5 T Split-Pair Target Magnet

- Can we get $\theta_m = 54.7^\circ$
- Old Hall C Magnet, with largest opening angles, retired in 2012
 - Better than 10^{-4} uniformity in 3x3x3 cm³ volume
- g_2^p ran with modified Hall B magnet
 - 54.7° not available
 - Alteration needed to get 50°
- New 5 T target magnet needed
 - \sim \$500k

Jefferson Lab Letter of Intent 12-14-001

- ${\sim}30$ PAC days with solid polarized target
 - Run with approved measurement of b_1 in Hall C
 - Ballpark 1% statistical error
 - · Heavily dependent on achieved polarization
 - Largest systematic uncertainty comes from target polarization measurement 4-5%
- LOI Reception, PAC 42
 - Encouragement with charges
 - Guidance on size of Δ from Lattice QCD
 - Polarized N target yet to be proven
 - Systematic challenges

Jefferson Lab Letter of Intent 12-14-001

- ${\sim}30$ PAC days with solid polarized target
 - Run with approved measurement of b_1 in Hall C
 - Ballpark 1% statistical error
 - · Heavily dependent on achieved polarization
 - Largest systematic uncertainty comes from target polarization measurement 4-5%
- LOI Reception, PAC 42
 - Encouragement with charges
 - Guidance on size of Δ from Lattice QCD
 - Polarized N target yet to be proven
 - Systematic challenges

Outline

 Double Helicity Flip Structure Function Measurement Approaches
 Jefferson Lab Measurement JLab Polarized Target
 Gluonometry at the EIC Polarized Ion Beams

Electron–Ion Collider Approach

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

() $\cos(2\phi)$ offers $\Delta(x,Q^2)$ sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{AN_+ + N_- + 2N_0}$
 - Set target at $\theta_m = 54.7^\circ$
 - Yields at N₊, N₋ and N₀ separated in time: systematic headaches
- Form difference of vector polarized and unpolarized cross sections
 - Set target at $\theta_m = 54.7^\circ$
 - Lose advantage of asymmetry, still have systematic headaches

Electron–Ion Collider Approach

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

(1) $\cos(2\phi)$ offers $\Delta(x,Q^2)$ sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target at $\theta_m = 54.7^\circ$
 - Yields at N₊, N₋ and N₀ separated in time: systematic headaches
- Form difference of vector polarized and unpolarized cross sections
 - Set target at $\theta_m = 54.7^\circ$
 - Lose advantage of asymmetry, still have systematic headaches

Electron-Ion Collider Approach

(1) $\cos(2\phi)$ offers $\Delta(x,Q^2)$ sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target at $\theta_m = 54.7^\circ$
 - Yields at N₊, N₋ and N₀ separated in time: systematic headaches
- Form difference of vector polarized and unpolarized cross sections
 - Set target at $\theta_m = 54.7^\circ$
 - Lose advantage of asymmetry, still have systematic headaches

Kinematic Reach at Electron-Ion Collider

EIC white paper

Polarized Ion Beam Possibilities

At EIC, $\Delta(x, Q^2)$ search becomes a problem of available ion sources and their corresponding depolarizing resonances.

Nucleus	Spin	Technique	Pol.	Flux	G
^{2}H	1	OP, ABS	100%	$1\mu A$	-0.14
⁶ Li	1	OP, ABS	88%	$2.4 \mu A$	-0.18
⁷ Li	$\frac{3}{2}$	OP, ABS			1.53
⁸ Li	2	TFM	$\sim 1\%$		
^{10}B	3	Not known			
^{23}Na	$\frac{3}{2}$	OP, ABS	77%	6.5 μ A	0.55

Spin Polarized Alkali Sources

- Heidelberg Atomic Beam Polarized Source (1975)⁵
 - Laval nozzle, Sextupole Stern–Gerlach give m = +1/2
 - RF used for adiabatic transitions to fill other states
 - Surface ionization, heated tungsten strip
 - 6,7 Li: 0.57 < |P| < 0.65, 200 nA
 - ²³Na: 50% losses to P and current in ionization

⁵E. Steffens, NIM 143 (1977)

Spin Polarized Alkali Sources

- Improved Heidelberg Source adds OP (1986)⁶
 - · Laser pumped, modulated to pump both multiplets
 - ⁶Li: A = 85%, ²³Na: A = 77%
 - Polarization limited due to lack of full ionization

⁶H. Reich, NIM A288 (1989)

Spin Polarized Alkali Sources

- Improved Heidelberg Source adds OP (1986)⁶
 - Laser pumped, modulated to pump both multiplets
 - ⁶Li: A = 85%, ²³Na: A = 77%
 - Polarization limited due to lack of full ionization

⁶H. Reich, NIM A288 (1989)

Spin Manipulation in Ring

- Depolarizing resonances when spin precession frequency = frequency of perturbing B field⁷
- Imperfection: $\nu_s = G\gamma = n$
- Intrinsic: $\nu_s = G\gamma = Pn + \nu_y$
- Anomalous *g*-factor *G*

- ⁷Li: G of 1.53 (like proton's 1.79) \Rightarrow easy
- ⁶Li: G of -0.18 (like deuteron's -0.14) \Rightarrow hard
- 23 Na: G of 0.55 could work at RHIC with more snakes
- Figure-8 makes for easier manipulation at lower G

⁷Bai, Courant *et al.*, BNL-96726-2012-CP, 2012.

EIC UG, July 8, 2016

Towards Design of an Optimized EIC Experiment

- Exploration of Δ in x, Q^2 , S, & A
 - How does effect change for different nuclear spin ≥ 1 ?
 - Spin-1/2 species important cross-check
 - How does effect change for different atomic masses?
 - Spin-1 ⁶Li vs. Spin-3/2 ⁷Li
- Simulate measurement for Inclusive DIS on Nuclei
- Estimate running time for given statistical uncertainties
 - Species choice informed by simulation
 - Loss of luminosity compared to JLab made up for by lack of dilution, kinematic coverage

Summary

- $\Delta(x,Q^2)$ offers a rare look at gluonic components in the nucleus
 - Significant Lattice QCD result drives interest
 - Need spin ≥ 1 , polarized, nuclear target
 - Low x, where glue dominates, region of interest
- Jefferson Lab experiment still in pre-proposal stage
 - + 0.05 < x < 0.33 for exploratory search
 - Polarized ¹⁴N target primary difficulty
 - Aim for proposal to JLab PAC45
- EIC capable of thorough search
 - Vast low x exploration
 - Polarized ion sources needed, Li and Na most attractive
 - Spin manipulation of polarized, "heavy" ions crucial

JLab Nuclear Gluonometry Collab:

- JLab: M. Jones, C. Keith, J. Maxwell, D. Meekins
- MIT: W. Detmold, R. Jaffe, R. Milner, P. Shanahan
- Univ. of Virginia: D. Crabb, D. Day, D. Keller, O. Rondon
- Oak Ridge: J. Pierce
- Thanks to A. Zelenski, V. Morozov

Thank you for your attention!

