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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Double Helicity Flip Structure Function ∆(x,Q2)
• ∆(x,Q2) corresponds to

helicity amplitude A+−,−+

• Photon helicity flip of two

• Unavailable to bound
nucleons or pions in the
nucleus

• Virtual ρ or ∆? Gluons not
associated with a nucleon?

• New lattice QCD result for first moment of ∆(x,Q2) in a φ
meson is preliminary, but very promising1

• Primary challenge of measurement is polarized target or source

1Detmold, Shanahan, arXiv:1606.04505
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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Where do we start looking?
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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Measurement Approaches

Measuring ∆(x,Q2) via DIS

• Transversely aligned, spin-1 target and unpolarized
electron incident from −z

• In the Bjorken limit, double helicity component of the
hadronic tensor W∆=2

µν,αβ(E,E ′) becomes (dropping higher
twist structure functions)1:

lim
Q2→∞

dσ

dx dy dφ
=
e4ME

4π2Q4

(
xy2F1(x,Q2) + (1− y)F2(x,Q2)

− x(1− y)

2
∆(x,Q2) cos 2φ

)

1Jaffe, Manohar, Phys Letters B 223 (2) (1989).
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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Measurement Approaches

For a spin–1 target polarized at angle θm from the z-axis and
electron incident from −z, target spin λm = (1, 0,−1):

dσ

dx dy dφ
(λm) =

2yα2

Q2

(
F1 +

2

3
amb1 +

1− y
xy2

(
F2 +

2

3
amb2

)
−1− y

y2
cm sin2 θm∆(x,Q2) cos(2φ)

)
with

am =
1

4
cm(3 cos2 θm − 1)

cm = 3|λm| − 2

Differences of cross sections: N+, N0, N− for λm = (1, 0,−1)
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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Measurement Approaches

Average over Polarization: N+ +N− +N0 ⇒ σ̄

• c+ + c0 + c− = 0

dσ̄

dx dy dφ
=

2yα2

Q2

(
F1 +

1− y
xy2

F2

)

• Of course, no ∆ dependence

• ∆ also cancels out of vector polarization difference
(N+ −N0) + (N0 −N−) = N+ −N−
• c+ − c− = 0
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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Measurement Approaches

Tensor Polarization: (N+−N0)− (N0−N−)⇒ ∆σ

• c+ − 2c0 + c− = 6

d∆σ

dx dy dφ
=

2yα2

Q2

(
(3 cos2 θm − 1)(b1 +

1− y
xy2

b2)

− 1− y
y2

6 sin2 θm∆(x,Q2) cos(2φ)

)

• Tensor structure functions b1, b2 contribute significantly

• Unless! (3 cos2 θm − 1) = 0 ⇒ θm = 54.7◦
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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Measurement Approaches

Difference of Polarized and Unpolarized:
N+−N̄ = N+−1

3(N++N−+N0) = 1
3(N+−N0)⇒ σ̂

• c+ − c0 = 1

dσ̂

dx dy dφ
=

2yα2

Q2

(
1

6
(3 cos2 θm − 1)(b1 +

1− y
xy2

b2)

− 1− y
y2

sin2 θm∆(x,Q2) cos(2φ)

)

• Again tensor structure functions b1, b2 contribute
significantly unless θm = 54.7◦
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Double Helicity Flip Structure Function Search for Exotic Gluonic States In the Nucleus

Measurement Approaches

3 ways to measure ∆(x,Q2)

(3 cos2 θm − 1)

(
b1 +

1− y
xy2

b2

)
−1− y

y2
sin2 θm∆(x,Q2) cos(2φ)

1 Leverage cos(2φ) to isolate ∆(x,Q2) dependence
• Need azimuthal detector acceptance

2 Form tensor asymmetry: A = 1
A
N++N−−2N0

N++N−+2N0

• θm = 54.7◦ to cancel b1, b2 dependence
• Change polarization to produce N+, N− and N0 yields

3 Form difference of vector polarized and unpolarized cross
sections
• θm = 54.7◦ to cancel b1, b2 dependence
• Lose cancellation of acceptances, efficiencies
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

JLab: Fixed, Polarized Target Approach?

(3 cos2 θm − 1)

(
b1 +

1− y
xy2

b2

)
−1− y

y2
sin2 θm∆(x,Q2) cos(2φ)

1 Not easy: need out of plane detectors for cos(2φ)

• Not standard in Halls A, C. SoLID?
• No transverse target in Hall B

2 Form tensor asymmetry: A = 1
A
N++N−−2N0

N++N−+2N0

• Set target field at θm = 54.7◦

• Yields at N+, N− and N0 separated in time: systematic
headaches

3 Vector polarized minus unpolarized cross sections
• Set target field at θm = 54.7◦, vector polarization easier
• Lose advantage of asymmetry, systematic headaches
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

Kinematic Reach with 12 GeV CEBAF in Hall C
• 11 GeV, unpolarized e− on fixed, polarized 14NH3

• Preliminary SHMS Monte Carlo (Gaskell, Arrington)
• Transverse (not 54.7◦!) UVa magnet (M. Jones)

θ E (GeV) E’ (GeV) Q2 (GeV/c2) x Rate (Hz)

10.5 11 5 1.842 0.164 170
10.5 11 4 1.474 0.112 152
10.5 11 3 1.105 0.074 138
10.5 11 2 0.737 0.044 100

15 11 5 3.748 0.333 28
15 11 4 2.999 0.228 30
15 11 3 2.249 0.15 32
15 11 2 1.499 0.089 34
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

Transverse (Not Longitudinal) Polarized Target?

• Need a spin≥1 nucleus, but this is a nuclear effect
• Higher atomic number, higher spin more likely to reveal

exotic gluonic components

• Deuteron? Expect two nucleons to good approximation

• Something heavier: Li? α + d

• Practical limitations from available polarized targets
• Long history of polarized p and d in solid targets
• Lithium Hydride and Deuteride: 6LiH,6LiD, also 7LiH
• Ammonia: 14NH3,14ND3, also 15NH3

• Leverage spin-1 Nitrogen in 14NH3

• Reliable performance in beam
• Augment polarization via transfer from H to N
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

JLab Polarized Target

JLab/UVa Solid Polarized Target

• Dynamic Nuclear Polarization
• 5 T field, 1 K 4He evap. fridge
• Dope material with paramagnetic

radicals (NH3: NH2 or H)
• Leverage e− p spin coupling
• µ-waves drive polarizing transitions
• e relaxes to flip–flop with new p

• Irradiated Ammonia: 95% p, 40% d

• Beam current <100 nA
• P decay: anneals and replacement

• Workhorse DIS technique at SLAC,
JLab; 2012’s g2

p most recently2
N
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2Pierce, Maxwell, NIM A 738 (2014).
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

JLab Polarized Target

Polarization, Tensor Alignment and DNP

P = (N+ −N0) + (N0 −N−)

= N+ −N−
A = (N+ −N0)− (N0 −N−)

= 1− 3N0

• Polarization and alignment can
be anywhere in the black
triangle

• At equal spin temperature, can
be only on red curve:

A = 2−
√

4− 3P 2.

• For P = 40% ⇒ A = 13%
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

JLab Polarized Target

Nitrogen Polarization in Ammonia: Not Easy

• We can also relate polarization
of N to p at EST:

PN = 4 tanh((ωN/ωp) arctanh(Pp))

3+tanh2((ωN/ωp) arctanh(Pp))

• At 95% p: 17% N
• PN = 17% ⇒ AN = 2%

• NMR measurement is difficult
• Peaks too far apart for one

NMR scan (2.4 MHz)
• Overcome at SMC with 2

sweeps, changing B field3

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

Pp

P
n

3B. Adeva, NIM A 419 (1998).
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

JLab Polarized Target

Techniques to Improve PN , AN

• Tricks to help: “RF Hole
Burning”4

• Vast separation of NMR
peaks in N will help.

• Cross Spin Transfer
• Move magnetic field to allow

cross relaxation of resonances
• SMC: 40% PN ⇒ 12% AN

• RF Spin Transfer
• Same effect in the end
• Allow dynamic pumping of N

while µ-waves pump p

4P. Delheij, NIM A 251 (1986).
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

JLab Polarized Target

5 T Split-Pair Target Magnet

• Can we get θm = 54.7◦

• Old Hall C Magnet, with largest
opening angles, retired in 2012
• Better than 10−4 uniformity

in 3x3x3 cm3 volume

• gp2 ran with modified Hall B
magnet
• 54.7◦ not available
• Alteration needed to get 50◦

• New 5 T target magnet needed
• ∼$500k

EIC UG, July 8, 2016 J. Maxwell 18
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Jefferson Lab Measurement Search for Exotic Gluonic States In the Nucleus

Jefferson Lab Letter of Intent 12-14-001

• ∼30 PAC days with solid polarized target
• Run with approved measurement of b1 in Hall C
• Ballpark 1% statistical error
• Heavily dependent on achieved polarization
• Largest systematic uncertainty comes from target

polarization measurement 4-5%

• LOI Reception, PAC 42
• Encouragement with charges
• Guidance on size of ∆ from Lattice QCD
• Polarized N target yet to be proven
• Systematic challenges

EIC UG, July 8, 2016 J. Maxwell 19
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Gluonometry at the EIC Search for Exotic Gluonic States In the Nucleus

Electron–Ion Collider Approach

(3 cos2 θm − 1)

(
b1 +

1− y
xy2

b2

)
−1− y

y2
sin2 θm∆(x,Q2) cos(2φ)

1 cos(2φ) offers ∆(x,Q2) sensitivity
• Vastly increased kinematic space for search
• Vector polarization observable

2 Form tensor asymmetry: A = 1
A
N++N−−2N0

N++N−+2N0

• Set target at θm = 54.7◦

• Yields at N+, N− and N0 separated in time: systematic
headaches

3 Form difference of vector polarized and unpolarized cross
sections
• Set target at θm = 54.7◦

• Lose advantage of asymmetry, still have systematic
headaches
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Gluonometry at the EIC Search for Exotic Gluonic States In the Nucleus

Kinematic Reach at Electron–Ion Collider

x
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Current polarized DIS data:
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Current polarized BNL-RHIC pp data:
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EIC white paper
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Gluonometry at the EIC Search for Exotic Gluonic States In the Nucleus

Polarized Ion Beams

Polarized Ion Beam Possibilities

At EIC, ∆(x,Q2) search becomes a problem of available ion
sources and their corresponding depolarizing resonances.

Nucleus Spin Technique Pol. Flux G

2H 1 OP, ABS 100% 1µA -0.14
6Li 1 OP, ABS 88% 2.4µA -0.18
7Li 3

2
OP, ABS 1.53

8Li 2 TFM ∼ 1%
10B 3 Not known

23Na 3
2

OP, ABS 77% 6.5 µA 0.55
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Gluonometry at the EIC Search for Exotic Gluonic States In the Nucleus

Polarized Ion Beams

Spin Polarized Alkali Sources
• Heidelberg Atomic Beam Polarized Source (1975)5

• Laval nozzle, Sextupole Stern–Gerlach give m = +1/2
• RF used for adiabatic transitions to fill other states
• Surface ionization, heated tungsten strip
• 6,7Li: 0.57 < |P | < 0.65, 200 nA
• 23Na: 50% losses to P and current in ionization

5E. Steffens, NIM 143 (1977)
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Gluonometry at the EIC Search for Exotic Gluonic States In the Nucleus

Polarized Ion Beams

Spin Polarized Alkali Sources
• Improved Heidelberg Source adds OP (1986)6

• Laser pumped, modulated to pump both multiplets
• 6Li: A = 85%, 23Na: A = 77%
• Polarization limited due to lack of full ionization

6H. Reich, NIM A288 (1989)
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Gluonometry at the EIC Search for Exotic Gluonic States In the Nucleus

Polarized Ion Beams

Spin Manipulation in Ring

• Depolarizing resonances when spin
precession frequency = frequency of
perturbing B field7

• Imperfection: νs = Gγ = n

• Intrinsic: νs = Gγ = Pn+ νy

• Anomalous g-factor G

• 7Li: G of 1.53 (like proton’s 1.79) ⇒ easy

• 6Li: G of -0.18 (like deuteron’s -0.14) ⇒ hard

• 23Na: G of 0.55 could work at RHIC with more snakes

• Figure–8 makes for easier manipulation at lower G

7Bai, Courant et al., BNL-96726-2012-CP, 2012.
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Gluonometry at the EIC Search for Exotic Gluonic States In the Nucleus

Polarized Ion Beams

Towards Design of an Optimized EIC Experiment

• Exploration of ∆ in x, Q2, S, & A
• How does effect change for different nuclear spin ≥ 1?
• Spin-1/2 species important cross-check
• How does effect change for different atomic masses?
• Spin-1 6Li vs. Spin-3/2 7Li

• Simulate measurement for Inclusive DIS on Nuclei

• Estimate running time for given statistical uncertainties
• Species choice informed by simulation
• Loss of luminosity compared to JLab made up for by

lack of dilution, kinematic coverage
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Search for Exotic Gluonic States In the Nucleus

Summary

• ∆(x,Q2) offers a rare look at gluonic components in the
nucleus
• Significant Lattice QCD result drives interest
• Need spin ≥ 1, polarized, nuclear target
• Low x, where glue dominates, region of interest

• Jefferson Lab experiment still in pre-proposal stage
• 0.05 < x < 0.33 for exploratory search
• Polarized 14N target primary difficulty
• Aim for proposal to JLab PAC45

• EIC capable of thorough search
• Vast low x exploration
• Polarized ion sources needed, Li and Na most attractive
• Spin manipulation of polarized, “heavy” ions crucial
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JLab Nuclear Gluonometry Collab:

• JLab: M. Jones, C. Keith, J.
Maxwell, D. Meekins

• MIT: W. Detmold, R. Jaffe, R.
Milner, P. Shanahan

• Univ. of Virginia: D. Crabb, D.
Day, D. Keller, O. Rondon

• Oak Ridge: J. Pierce

• Thanks to A. Zelenski, V. Morozov

Thank you for your attention!
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