Nuclear PDFs at the LHC

Michael Murray University of Kansas

What we have learned about Nuclear PDFs at the LHC

- PDFs can be proved by quarkonia, electroweak bosons, jets, and Drell Yan production.
- Experimental systems for studying these are pPb and photon lead collisions.
- Besides the nuclear PDFs there are other effects that effect the data, eg radiative energy loss, Cronin effect,r adiative or coherent energy loss and interaction with comovers.
- Measure as many probes as possible over the widest possible range of rapidity and p_{T} .

Running modes

In addition ultra-peripheral collisions produce photon – lead collisions with an energy range $W_{\gamma p} = 20 - 800 \text{ GeV}$

Kinematic Range of LHC

In this talk I will start at high Q² and y=0 and move to lower Q² and forward rapidity.

Apologies for missing references and CMS centric talk.

Gluon density has to saturate at low x

Coverage of LHC experiments

pPb => Z at $\sqrt{s_{NN}}$ = 5.02 TeV

Phys. Rev. C 92, 044915 (2015)

Phys. Lett. B 759 (2016) 36

pPb => Z, forward/backward ratio

pPb => W at $\sqrt{s_{NN}}$ = 5.02 TeV

pPb => dijets at $\sqrt{s_{NN}} = 5.02$ TeV

Eur. Phys. J. C 74 (2014) 2951

pPb => dijets at 5.02 TeV

PRL 114 (2015) 072302

pPb => b jets at $\sqrt{s_{NN}}$ = 5.02 TeV

Phys. Lett. B 754 (2016) 59

$\Upsilon(1S) R_{pPb}$ and R_{FB} at 5.02 TeV

 $\Upsilon(1S)$ is also sensitive to CNM effects

R_{pPb} versus rapidity:

Suppression in forward region is smaller than for J/ψ

Central value in forward region close to that of J/ψ from $b \rightarrow CNM$ effects on b hadrons Indication of enhancement in the backward region \rightarrow could be attributed to anti-shadowing **R**_{FB} versus rapidity:

Ratio in agreement with predictions of E. loss + shadowing (EPSO9 NLO)

Inclusive J/ ψ from pPb at 5.02 TeV

R_{pPb} from J/ ψ and ψ (2s) at 5TeV

J/ψ forward/backward, pPb at 5TeV

$\Psi(2s)$ forward/backward, pPb at 5TeV

JHEP 1603 (2016) 133

Prompt D⁰ R_{pPb} , R_{FB}

UPC J/ ψ for different breakup modes

Xn0n single-sided any number of neutrons
XnXn double-sided any number of neutrons
1n0n single-sided exactly one neutron
1n1n double-sided one neutron each side

J/ ψ with $p_{\rm T} < 0.15 {\rm GeV}/c$	$X_n X_n / X_n 0_n$	$1_n 0_n / X_n 0_n$	$1_n 1_n / X_n 0_n$
Data	$0.36{\pm}0.04$	$0.26 {\pm} 0.03$	$0.03 {\pm} 0.01$
STARLIGHT	0.37	N/A	0.02
GSZ	0.32	0.30	0.02

PbPb Ultra-peripheral J/ψ

ALICE: Eur.Phys.J. C73 (2013) 2617, Phys.Lett. B 718 (2013) 1273

http://news.fnal.gov/2016/07/shining-light-lead-lhc/

$\gamma p => J/\psi$ vs photon-p energy

Phys. Rev. Lett. 113 (2014) 232504

Vp => Upsilon vs photon-p energy

First attempt to use UPCs in nPDFs

Summary

- There now exists a wide range pPb and VPb data covering a large x and Q² range
- So far EPS09 has been doing very well describing data.
- At low X and Q² ultra-peripheral data can impose significant constraints on nPDFs.
- New data on forward Zs and Jets and quarkonia and UPC jets should come soon.
- Looking for new ways to test PDFs, eg correlated production, incoherent UPCs.

LHCb results from pA collisions – ISMD 2015

pPb: Electrons from heavy flavor

Phys. Lett. B 754 (2016) 81-93

$\Psi(2S)$ relative suppression wrt J/ ψ

005

Relative suppression is calculated as:

Intriguing stronger suppression of prompt $\psi(2S)$ than that of prompt J/ ψ Similar suppression for $\psi(2S)$ from b and J/ ψ from b

→ R compatible with 1 within large uncertainties Results for inclusive $\psi(2S)$ compatible with ALICE measurement

27 L. Massacrier

LHCb results from pA and PbPb collisions-LHCP 2016