Nucleon Distribution Amplitudes

C. Mezrag

Argonne National Laboratory

July $8^{\text {th }}, 2016$

In collaboration with:
C.D. Roberts

- Lightcone quantization : $z^{0} \rightarrow z^{+}=z^{0}+z^{3}$
- Lightcone-QCD allows decomposition of hadrons in Fock states:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Often restricted to the first term, i.e. $\Psi_{\beta}^{q \bar{q}}$ and $\Psi_{\beta}^{q q q}$.
- Schematically (disregarding twist decomposition), the DA φ :

$$
\varphi(x) \propto \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{2}} \Psi\left(x, k_{\perp}\right)
$$

Evolution

- DA are scale dependent objects
- They obey evolution equations and can be written as:

$$
\varphi_{\pi}\left(x, \mu^{2}\right)=\varphi_{\pi}^{A s}(x)\left(1+\sum_{j=2,4 \ldots}^{\infty} a_{j}^{\left(\frac{3}{2}\right)}\left(\mu^{2}\right) C_{j}^{\left(\frac{3}{2}\right)}(x)\right)
$$

Efremov and Radyushkin (1980)
Lepage and Brodsky (1980)

At large enough scale, one expects $\varphi \simeq \varphi_{\text {As }}$

Evolution

- DA are scale dependent objects
- They obey evolution equations and can be written as:

$$
\varphi_{\pi}\left(x, \mu^{2}\right)=\varphi_{\pi}^{A s}(x)\left(1+\sum_{j=2,4 \ldots}^{\infty} a_{j}^{\left(\frac{3}{2}\right)}\left(\mu^{2}\right) C_{j}^{\left(\frac{3}{2}\right)}(x)\right)
$$

Efremov and Radyushkin (1980)
Lepage and Brodsky (1980)

At large enough scale, one expects $\varphi \simeq \varphi_{\text {As }}$

Caveat

What does large enough mean?

Fock space at high Q^{2}

- At large Q^{2},

$$
F\left(Q^{2}\right) \simeq \int[\mathrm{d} x][\mathrm{d} y] \varphi^{*}(y) T(x, y) \varphi(x)
$$

- Higher Fock states suppressed by $\left(\frac{\alpha_{S}\left(Q^{2}\right)}{Q^{2}}\right)$ per additional constituent.
- T can be computed through perturbation theory.

From DA to Form factors

- Pion case:

$$
Q^{2} F_{\pi}\left(Q^{2}\right)=16 \pi \alpha_{S}\left(Q^{2}\right) f_{\pi} \omega_{\varphi}^{2} \quad \text { for large enough } Q^{2}
$$

with

$$
\omega_{\varphi}=\frac{1}{3} \int \mathrm{~d} x \frac{\varphi\left(x, Q^{2}\right)}{x}, \quad \omega_{A s}=1
$$

Farrar and Jackson (1979),
Efremov and Radyushkin (1980),
Lepage and Brodsky (1980).

From DA to Form factors

- Pion case:

$$
Q^{2} F_{\pi}\left(Q^{2}\right)=16 \pi \alpha_{S}\left(Q^{2}\right) f_{\pi} \omega_{\varphi}^{2} \quad \text { for large enough } Q^{2}
$$

with

$$
\omega_{\varphi}=\frac{1}{3} \int \mathrm{~d} x \frac{\varphi\left(x, Q^{2}\right)}{x}, \quad \omega_{A s}=1
$$

Farrar and Jackson (1979), Efremov and Radyushkin (1980),

Lepage and Brodsky (1980).

- Proton case:
- same reasoning but absolute normalisation unknown,
- when assuming isospin symmetry, the ratio between the magnetic form factors of the proton and neutron can be predicted.

Pion distribution amplitude

$$
\phi_{A s}(x)=6 x(1-x)
$$

Chang et al. (2013)

Pion distribution amplitude

$$
\phi_{A s}(x)=6 x(1-x)
$$

Chang et al. (2013)
Chang et al. (2013)

Pion distribution amplitude

$$
\phi_{A s}(x)=6 x(1-x)
$$

Chang et al. (2013)
Chang et al. (2013)

- Broad DSE pion DA is much more consistent with the form factor than the asymptotic one.
- The scale when the asymptotic DA become relevant is huge.

Proton distribution amplitude

Proton distribution amplitude

Proton distribution amplitude

Proton distribution amplitude

$\varphi_{A s}\left(x_{1}, x_{2}, x_{3}\right)=120 x_{1} x_{2} x_{3}$
Lepage and Brodsky (1980)
What happens when computing the Proton DA within DSEs framework?

- Modern diquark: strong correlations between two quarks inside a nucleon.

Cahill et al., (1987)

- Two types of diquark correlations inside the nucleon:
- Scalar diquarks.
- Axial-Vector diquarks.
- This allows to solve a simplified Faddeev equation...
- .. and to compute in the DSE framework of different baryon observables, including the nucleon form factors.

We would like to apply this approximation to compute nucleon DA.

Leading Twist Nucleon DA

- Parameterisation of non-local matrix element in 24 invariant functions:

$$
\begin{aligned}
\langle 0| \epsilon^{i j k} u_{\alpha}^{i} & \left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle \\
= & \frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)\right. \\
& \left.-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]+ \text {higher twist. }
\end{aligned}
$$

Chernyak and Zhitnitsky (1983) Braun et al. (2000)

Leading Twist Nucleon DA

- Parameterisation of non-local matrix element in 24 invariant functions:

$$
\begin{aligned}
\langle 0| \epsilon^{i j k} u_{\alpha}^{i} & \left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle \\
= & \frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)\right. \\
& \left.-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]+ \text {higher twist. }
\end{aligned}
$$

Chernyak and Zhitnitsky (1983) Braun et al. (2000)

Leading Twist Nucleon DA

- Parameterisation of non-local matrix element in 24 invariant functions:

$$
\begin{aligned}
\langle 0| \epsilon^{i j k} u_{\alpha}^{i} & \left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle \\
= & \frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)\right. \\
& \left.-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]+ \text {higher twist. }
\end{aligned}
$$

Chernyak and Zhitnitsky (1983) Braun et al. (2000)

- Nucleon leading twist DA defined as:

$$
\varphi\left(x_{i}\right)=V\left(x_{i}\right)-A\left(x_{i}\right)
$$

Matrix element of the leading twist DA

- Definition of the leading twist DA in terms of matrix element:

$$
\begin{aligned}
\langle 0| \epsilon^{i j k} & \left(u_{\uparrow}^{i}\left(z_{1}\right) C \not \ddagger u_{\downarrow}^{j}\left(z_{2}\right)\right) \not \ddagger d_{\uparrow}^{k}\left(z_{3}\right)|P\rangle \\
& =-\frac{1}{2}(p \cdot z) \neq N^{\uparrow} \int \mathcal{D} x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right) e^{-i \sum_{i} x_{i} P \cdot z_{i}} .
\end{aligned}
$$

- quark of given chirality: $q^{\uparrow(\downarrow)}=\frac{1 \pm \gamma_{5}}{2} q$
- momentum conservation: $\mathcal{D} x_{i}=\mathrm{d} x_{i} \delta\left(1-x_{1}-x_{2}-x_{3}\right)$
- Definition of the leading twist DA in terms of matrix element:

$$
\begin{aligned}
\langle 0| \epsilon^{i j k} & \left(u_{\uparrow}^{i}\left(z_{1}\right) C \not \subset u_{\downarrow}^{j}\left(z_{2}\right)\right) \not \ddagger d_{\uparrow}^{k}\left(z_{3}\right)|P\rangle \\
& =-\frac{1}{2}(p \cdot z) \notin N^{\uparrow} \int \mathcal{D} x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right) e^{-i \sum_{i} x_{i} P \cdot z_{i}} .
\end{aligned}
$$

- quark of given chirality: $q^{\uparrow(\downarrow)}=\frac{1 \pm \gamma_{5}}{2} q$
- momentum conservation: $\mathcal{D} x_{i}=\mathrm{d} x_{i} \delta\left(1-x_{1}-x_{2}-x_{3}\right)$
- Different possible contractions for $|u(\uparrow) u(\downarrow) d(\uparrow)\rangle$:

Matrix element of the leading twist DA

- Definition of the leading twist DA in terms of matrix element:

$$
\begin{aligned}
\langle 0| \epsilon^{i j k} & \left(u_{\uparrow}^{i}\left(z_{1}\right) C \nless u_{\downarrow}^{j}\left(z_{2}\right)\right) \not \ddagger d_{\uparrow}^{k}\left(z_{3}\right)|P\rangle \\
& =-\frac{1}{2}(p \cdot z) \notin N^{\uparrow} \int \mathcal{D} x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right) e^{-i \sum_{i} x_{i} P \cdot z_{i}} .
\end{aligned}
$$

- quark of given chirality: $q^{\uparrow(\downarrow)}=\frac{1 \pm \gamma_{5}}{2} q$
- momentum conservation: $\mathcal{D} x_{i}=\mathrm{d} x_{i} \delta\left(1-x_{1}-x_{2}-x_{3}\right)$
- Different possible contractions for $|u(\uparrow) u(\downarrow) d(\uparrow)\rangle$:
- one spin aligned quark u with a scalar diquark $|u(\uparrow),[u d]\rangle$

Matrix element of the leading twist DA

- Definition of the leading twist DA in terms of matrix element:

$$
\begin{aligned}
\langle 0| \epsilon^{i j k} & \left(u_{\uparrow}^{i}\left(z_{1}\right) C \not \subset u_{\downarrow}^{j}\left(z_{2}\right)\right) \not \ddagger d_{\uparrow}^{k}\left(z_{3}\right)|P\rangle \\
& =-\frac{1}{2}(p \cdot z) \neq N^{\uparrow} \int \mathcal{D} x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right) e^{-i \sum_{i} x_{i} P \cdot z_{i}} .
\end{aligned}
$$

- quark of given chirality: $q^{\uparrow(\downarrow)}=\frac{1 \pm \gamma_{5}}{2} q$
- momentum conservation: $\mathcal{D} x_{i}=\mathrm{d} x_{i} \delta\left(1-x_{1}-x_{2}-x_{3}\right)$
- Different possible contractions for $|u(\uparrow) u(\downarrow) d(\uparrow)\rangle$:
- one spin aligned quark u with a scalar diquark $|u(\uparrow),[u d]\rangle$
- one spin aligned quark u with a longitudinally polarised AV diquark: $\left|u(\uparrow),\{u d\}_{L}\right\rangle$
- one spin aligned quark d with a longitudinally polarised AV diquark: $\left|d(\uparrow),\{u u\}_{\llcorner }\right\rangle$
- one spin anti-aligned quark u with a transversaly polarised AV diquark: $\left|u(\downarrow),\{u d\}_{T}\right\rangle$

Quark-Diquark DA

- Need of specific ingredients:
- quark propagator $S_{u}\left(S_{d}\right)$,
- AV diquark propagator $S_{u u}$,
- diquark Bethe-Salpeter amplitude $\Gamma_{u u}$,
- nucleon Bethe-Salpeter amplitude $\Gamma_{d ; u u}$.

Quark-Diquark DA

- Need of specific ingredients:
- quark propagator $S_{u}\left(S_{d}\right)$,
- AV diquark propagator $S_{u u}$,
- diquark Bethe-Salpeter amplitude $\Gamma_{u u}$,
- nucleon Bethe-Salpeter amplitude $\Gamma_{d ; u u}$.

All these objects can be computed non-pertubatively using DSEs-BSEs.

Nakanishi representation: Quark-Diquark Amplitudergonne

- quark propagator:

$$
S_{q}(q)=\frac{-i \gamma \cdot q+M}{q^{2}+M^{2}}
$$

- diquark propagator:

$$
S_{q q}(K)=\frac{1}{K^{2}+\widetilde{M}^{2}}\left(\delta_{\mu \nu}+\frac{K^{\mu} K^{\nu}}{K^{2}}\right)
$$

- Nakanishi representation for the quark-diquark Bethe-Salpeter Amplitude:

$$
\mathcal{A}_{\mu}(K, P)=i \gamma_{5} P_{\mu} \frac{\bar{M}}{f_{N}} \bar{M}^{2 \sigma} \int_{-1}^{+1} \mathrm{~d} z \rho_{\sigma}(z)\left[\frac{1}{\left(\left(K-\frac{1-z}{2} P\right)^{2}+\Lambda_{N}^{2}\right)}\right]^{\sigma}
$$

Nakanishi representation: Diquark Amplitude

- Quark propagator:

$$
S_{q}(q)=\frac{-i \gamma \cdot q+M}{q^{2}+M^{2}}
$$

- Extended Bethe-Salpeter Amplitude:

$$
\begin{gathered}
\Gamma_{\mu}(q, K)=i \tilde{\gamma}_{\mu} C \frac{M}{f} M^{2 \nu} \int_{-1}^{+1} \mathrm{~d} z \rho_{\nu}(z)\left[\frac{1}{\left(\left(q-\frac{1-z}{2} K\right)^{2}+\Lambda_{q}^{2}\right)}\right]^{\nu} \\
K \cdot \tilde{\gamma}=0
\end{gathered}
$$

- Computation of the Mellin moment of the nucleon DA:

$$
\widetilde{\varphi}\left(n_{1}, n_{2}, n_{3}\right)=\int \mathcal{D} x_{i} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

- Computation of the Mellin moment of the nucleon DA:

$$
\widetilde{\varphi}\left(n_{1}, n_{2}, n_{3}\right)=\int \mathcal{D} x_{i} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

- 3D Mellin Transform \rightarrow one can expect hard time to inverse it...
- Computation of the Mellin moment of the nucleon DA:

$$
\widetilde{\varphi}\left(n_{1}, n_{2}, n_{3}\right)=\int \mathcal{D} x_{i} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

- 3D Mellin Transform \rightarrow one can expect hard time to inverse it...
- ... but momentum conservation $\left(\delta\left(1-x_{1}-x_{2}-x_{3}\right)\right)$ reduce the problem to a 2D transform.
- Computation of the Mellin moment of the nucleon DA:

$$
\widetilde{\varphi}\left(n_{1}, n_{2}, n_{3}\right)=\int \mathcal{D} x_{i} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

- 3D Mellin Transform \rightarrow one can expect hard time to inverse it...
- ... but momentum conservation $\left(\delta\left(1-x_{1}-x_{2}-x_{3}\right)\right)$ reduce the problem to a 2D transform.
- $\widetilde{\varphi}(1,0,0)+\widetilde{\varphi}(0,1,0)+\widetilde{\varphi}(0,0,1)=\widetilde{\varphi}(0,0,0)$.
- Computation of the Mellin moment of the nucleon DA:

$$
\widetilde{\varphi}\left(n_{1}, n_{2}, n_{3}\right)=\int \mathcal{D} x_{i} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

- 3D Mellin Transform \rightarrow one can expect hard time to inverse it...
- ... but momentum conservation $\left(\delta\left(1-x_{1}-x_{2}-x_{3}\right)\right)$ reduce the problem to a 2D transform.
- $\widetilde{\varphi}(1,0,0)+\widetilde{\varphi}(0,1,0)+\widetilde{\varphi}(0,0,1)=\widetilde{\varphi}(0,0,0)$.

It is possible to analytically invert the Mellin Transform.

- Computation of the Mellin moment of the nucleon DA:

$$
\widetilde{\varphi}\left(n_{1}, n_{2}, n_{3}\right)=\int \mathcal{D} x_{i} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

- 3D Mellin Transform \rightarrow one can expect hard time to inverse it...
- ... but momentum conservation $\left(\delta\left(1-x_{1}-x_{2}-x_{3}\right)\right)$ reduce the problem to a 2D transform.
- $\widetilde{\varphi}(1,0,0)+\widetilde{\varphi}(0,1,0)+\widetilde{\varphi}(0,0,1)=\widetilde{\varphi}(0,0,0)$.

It is possible to analytically invert the Mellin Transform.

Analytical results for very simple Ansätze.

Preliminary results

Caveat: transversely polarised diquark is missing

Asymptotic

70\%Scalar 30\% AV

100\% Scalar

100\% AV

- At high enough Q^{2}, it is possible to compute the form factor through the DA.
- Results on the pion show that at available energy, the asymptotic DA is not relevant for such a computation.
- To compute the nucleon DA and see how it differs from the asymptotic one.
- We developed algebraic models as a first step.
- Results are encouraging.
- Short term outlooks:
- Finish the algebraic computations.
- Numerical computation using solution of the DSEs.
- Comparison with lattice data
- Computation of the ratio of the proton and neutron magnetic form factors.
- Longer term outlooks \rightarrow computations of other matrix elements:
- Valence nucleon PDF.
- Valence nucleon GPD,
\rightarrow following the methods highlighted in arXiv:1602.07722 for the pion.
\rightarrow using the PARTON Software developed at Saclay (1512.06174).

Thank you for your attention!

