Summary of Parallel Sessions: Novel Observables & Building on Lessons Learned

Speakers: Phiala Shanahan, James Maxwell, Tanja Horn, Cédric Mezrag; Sergei Alekhin, Michael Murray, Christophe Royon, Jan Bernauer

Ian Cloët Argonne National Laboratory

The Electron Ion Collider User Group Meeting

Argonne, 7–9 July 2016 Office of Science

Exotic Glue in the Nucleus? Gluonic Transversity Structure Functions from Lattice QCD

Phiala Shanahan, Will Detmold

Massachusetts Institute of Technology

July 8, 2016

'Exotic' Glue in the Nucleus

'Exotic' Glue

Contributions to gluon observables that are not from nucleon degrees of freedom.

Exotic glue operator: operator in nucleon = 0 operator in nucleus $\neq 0$

Double Helicity Flip Gluon Structure Function: $\Delta(x, Q^2)$

Jaffe and Manohar (1989)

Leading-twist, double-helicity-flipping structure function $\Delta(x,Q^2)$ sensitive to exotic glue in the nucleus

- Clear signature for exotic glue in nuclei with spin \geq 1: NO analogous twist-2 quark PDF \rightarrow unambiguous
- Experimentally measurable (JLab LOI 2016, James Maxwell's talk)
- Moments are calclable on the lattice

First Lattice Study: arXiv:1606.04505

• First moment of $\Delta(x,Q^2)$ in spin-1 ϕ (or $\rho)$ meson

Double Helicity Flip Gluon Structure Function: $\Delta(x, Q^2)$

Double helicity flip amplitude:

$$\Delta(x, Q^2) = A_{+-,-+} = A_{-+,+-}$$

UNRENORMALISED reduced matrix element: ϕ meson

Search for Exotic Gluonic States In the Nucleus

J. Maxwell

with W. Detmold, R. Jaffe, R. Milner, P. Shanahan

EIC User Group Meeting July 8th, 2016

Double Helicity Flip Structure Function $\Delta(x,Q^2)$

- Δ(x, Q²) corresponds to helicity amplitude A_{+-,-+}
- Photon helicity flip of two
- Unavailable to bound nucleons or pions in the nucleus
- Virtual ρ or Δ ? Gluons not associated with a nucleon?

- New lattice QCD result for first moment of $\Delta(x,Q^2)$ in a ϕ meson is preliminary, but very promising^1
- Primary challenge of measurement is polarized target or source

¹Detmold, Shanahan, arXiv:1606.04505

Measuring $\Delta(x,Q^2)$ via DIS

- Transversely aligned, spin-1 target and unpolarized electron incident from $-\boldsymbol{z}$
- In the Bjorken limit, double helicity component of the hadronic tensor $W^{\Delta=2}_{\mu\nu,\alpha\beta}(E,E')$ becomes (dropping higher twist structure functions)¹:

$$\lim_{Q^2 \to \infty} \frac{d\sigma}{dx \, dy \, d\phi} = \frac{e^4 M E}{4\pi^2 Q^4} \left(xy^2 F_1(x, Q^2) + (1-y)F_2(x, Q^2) - \frac{x(1-y)}{2} \Delta(x, Q^2) \cos 2\phi \right)$$

¹Jaffe, Manohar, Phys Letters B 223 (2) (1989).

3 ways to measure $\Delta(x, Q^2)$

$$\underbrace{(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right)}_{yy^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

() Leverage $\cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence

- Need azimuthal detector acceptance
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Change polarization to produce N_+ , N_- and N_0 yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

Electron-Ion Collider Approach

(1) $\cos(2\phi)$ offers $\Delta(x,Q^2)$ sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target at $\theta_m = 54.7^\circ$
 - Yields at N₊, N₋ and N₀ separated in time: systematic headaches
- Form difference of vector polarized and unpolarized cross sections
 - Set target at $\theta_m = 54.7^\circ$
 - Lose advantage of asymmetry, still have systematic headaches

Pion and Kaon Structure Functions

Collaboration with Roy Holt, Paul Reimer, Rolf Ent Thanks to: Ian Cloet, Craig Roberts, Yulia Furletova and Steve Wood

EIC User Group Meeting 2016

Argonne National Laboratory, IL, 7-9 July 2016

table of contents

ANL 7-9 July 2016

Why should you be interested in pions and kaons?

Protons, neutrons, pions and kaons are the main building blocks of nuclear matter

- 1) The pion, or a meson cloud, explains light-quark asymmetry in the nucleon sea
- Pions are the Yukawa particles of the nuclear force but no evidence for excess of nuclear pions or anti-quarks
- Kaon exchange is similarly related to the ΛN interaction correlated with the Equation of State and astrophysical observations
- 4) Mass is enigma cannibalistic gluons vs massless Goldstone bosons

Ca/2H 1.2 1.1 1.0 0.9 **Drell-Yan Ratio** Alde et al (Fermilab E772) Phys. Rev. Lett. 64 2479 (1990) Fe/²H E772 W/2H 1.2 EMC Sn/2H (DIS) 1.1 1.0 0.9 ion Excess Quark Cluster 0.8 Rescaling 0.7 0.0 0.1 0.2 0.1 0.20.3

Equations of state and neutron star mass-radius relations

table of contents

1.3

13/41

World Data on pion structure function F_2^{π}

Good Acceptance for n, Λ , Σ detection

Boos 12 GeV CEBAF Forward Geometric Particle Detection Efficiency (at small -t) Ν > 20% 50% Λ Σ 17%

World Data on pion structure function F_2^{π}

HERA

EIC

roughly x_{min} for EIC projections

Kaon structure functions – gluon pdfs

Based on Lattice QCD calculations and DSE calculations:

- Valence quarks carry 52% of the pion's momentum at the light front, at the scale used for Lattice QCD calculations, or roughly 65% at the perturbative hadronic scale
- □ At the same scale, valence-quarks carry ⅔ of the kaon's light-front momentum, or roughly 95% at the perturbative hadronic scale

Thus, at a given scale, there is far less glue in the kaon than in the pion:

- > heavier quarks radiate less readily than lighter quarks
- > heavier quarks radiate softer gluons than do lighter quarks
- Landau-Pomeranchuk effect: softer gluons have longer wavelength and multiple scatterings are suppressed by interference.
- Momentum conservation communicates these effects to the kaon's u-quark.

Nucleon Distribution Amplitudes

C. Mezrag

Argonne National Laboratory

May 5th, 2016

In collaboration with: C.D. Roberts

Proton distribution amplitude

 $\varphi_{As}(x_1, x_2, x_3) = 120x_1x_2x_3$

Lepage and Brodsky (1980)

What happens when computing the Proton DA within DSEs framework?

Quark-Diquark DA

- Need of specific ingredients:
 - quark propagator $S_u(S_d)$,
 - AV diquark propagator S_{uu},
 - diquark Bethe-Salpeter amplitude Γ_{uu} ,
 - nucleon Bethe-Salpeter amplitude $\Gamma_{d;uu}$.
- Different contributions for the $|u(\uparrow)u(\downarrow)d(\uparrow)\rangle$ state:
 - 1 contribution for the scalar diquark
 - 3 different contributions for the AV diquark

All these objects can be computed non-pertubatively using DSEs-BSEs.

Preliminary results

Caveat: transversely polarised diquark is missing

ABMP16 PDFs

S.Alekhin (Univ. of Hamburg & IHEP Protvino) (in collaboration with J.Blümlein, S.Moch, and R.Plačakytė)

- Drell-Yan data from the LHC and Tevatron: Isospin asymmetry and d/u at large x
- HERA I+II data: $\alpha_s(M_z)$, m_c , and m_b
- Charm production data from NOMAD and CHORUS: strange sea
- t-quark data: m, and gluon distribution

sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Plačakytė hep-ph/1404.6469

sa, Blümlein, Moch, Plačakytė, hep-ph/1508.07923

EICUG meeting, ANL, 8 Jul 2016

Collider W&Z data used in the fit

In the forward region $x_2 >> x_1$ $\sigma(W^+) \sim u(x_2) \text{ dbar } (x_1)$ $\sigma(W^-) \sim d(x_2) \text{ ubar} (x_1)$ $\sigma(Z) \sim Q_u^{-2}u(x_2) \text{ ubar } (x_1) + Q_p^{-2}d(x_2) \text{ dbar}(x_1)$ $\sigma(DIS) \sim q_u^{-2}u(x_2) + q_d^{-2}d(x_2)$

Forward W&Z production probes small/large x and is complementary to the DIS \rightarrow constraint on the quark iso-spin asymmetry

^2									
Experiment		ATLAS	CMS		D0		LHCb		
\sqrt{s} (TeV)		7	7	8	1.96		7	8	8
Final states		$W^+ \rightarrow l^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \to \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ v$	$W^+ \to \mu^+ \nu$	$Z \rightarrow e^+ e^-$	$W^+ \to \mu^+ \nu$
		$W^- \rightarrow l^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \to \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- ightarrow e^- v$	$W^- \to \mu^- \nu$		$W^- \to \mu^- \nu$
		$Z \rightarrow l^+ l^-$					$Z \to \mu^+ \mu^-$		$Z \to \mu^+ \mu^-$
Cut on the lepton P_T		$P_T^l > 20 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^c > 25 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$	$P_T^c > 20 \text{ GeV}$
NDP		30	11	22	10	13	31	17	32
x ²	ABMP16	30.0	22.0	16.8	18.2	19.6	45.4	21.5	45.4
	CJ15	-	-	-	20	29	-	-	-
	CT14	42	_ <i>a</i>	-	-	34.7	-	-	-
	JR14	-	-	-	-	-	-	-	-
	HERAFitter	-	-	-	13	19	-	-	-
	MMHT14	39	-	-	21	-	-	-	-
	NNPDF3.0	35.4	18.9	-	-	-	-	-	-

"Statistically less significant data with the cut of $P_T^{\mu} > 35$ GeV are used.

Obsolete/superseded/low-accuracy Tevatron and LHC data are not used

Inclusive HERA I+II data

H1 and ZEUS hep-ex/1506.06042

The value of χ^2 /NDP is bigger than 1, however still comparable to the pull distribution width

table of contents

24/41

$\boldsymbol{\alpha}_{s}$ updated

- α_{e} goes up by 1 σ with HERA I+II data
- the value of α_s is still lower than the PDG one: pulled up by the SLAC and NMC data; pulled down by the BCDMS and HERA ones
- only SLAC determination overlap with the PDG band provided the high-twist terms are taken into account

Nuclear PDFs at the LHC

Michael Murray University of Kansas

1

ANL 7-9 July 2016

Running modes

In addition ultra-peripheral collisions produce photon – lead collisions with an energy range $W_{\gamma p} = 20 - 800 \text{ GeV}$

Kinematic Range of LHC

In this talk I will start at high Q² and y=0 and move to lower Q² and forward rapidity.

Apologies for missing references and CMS centric talk.

Gluon density has to saturate at low x

First attempt to use UPCs in nPDFs

23 table of contents

ANL 7-9 July 2016

Experience on diffraction at HERA and at the LHC towards the EIC

Christophe Royon University of Kansas, Lawrence, USA

EIC Users Meeting, Argonne National Lab., July 5-9 2016

Contents:

- Diffraction at HERA
- Vector meson production
- PDFs in Pomeron
- Factorization breaking

1

The HERA accelerator at DESY, Hamburg

HERA: ep collider who closed in 2007, about 1 fb $^{-1}$ accumulated

Diffractive kinematical variables

- Momentum fraction of the proton carried by the colourless object (pomeron): $x_p = \xi = \frac{Q^2 + M_X^2}{Q^2 + W^2}$
- Momentum fraction of the pomeron carried by the interacting parton if we assume the colourless object to be made of quarks and gluons: $\beta = \frac{Q^2}{Q^2 + M_X^2} = \frac{x_{B_I}}{x_P}$
- 4-momentum squared transferred: $t = (p p')^2$

4

An example: J/Ψ in photoproduction

- Hard scale present due to J/Ψ mass $(Q^2 \sim 0)$
- Description using perturbative QCD and dipole model: Pomeron is modeled by a gluon ladder at lowest order: $\sigma \sim [\alpha_S(\mu^2)xg(x,\mu^2)]^2$

Conclusion

- Many physics topics studied at HERA can be studied with higher precision at the EIC: only a few examples given here
- Vector meson production: study the interface of perturbative/non-perturbative QCD
- Measurement of parton densities in diffractive events: higher precision, use structure function measurements, jets, charm...
- Study survical effects: using γ -p events as an example
- Study BFKL resummation effects and saturation phenomena: important to have a good coverage in the forward directions in order to measure very forward jets, can be also studied in diffractive events
- Exclusive diffraction
- Many topics to be studied at the EIC benefitting from the experience at HERA, Tevatron and LHC

Unique opportunities to measure proton elastic form factors at EIC

Jan C. Bernauer

EIC UG Meeting, July 2016

Massachusetts Institute of Technology

History of unpolarized electron-proton scattering

F.F. summary: Collider kinematics

- Can measure proton electric radius without Two-Photon-Exchange effects
- G_M at large Q²: count rate very small

ANL 7-9 July 2016

F.F. summary: "Race" kinematics

 Unique opportunity to measure low-Q² G_M and magnetic radius

F.F. summary: Polarization variables

Blatantly stolen from C. Sofiatti and T. W. Donnelly, "Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)

- Can study e/m form factor ratios
 Or: Take from fixed target experiments ⇒ measurement of beam polarization product
- PV also in reach

Clearly tremendous physics potential for an EIC!

Must build a machine that can truly deliver the physics we are promising