Summary of Parallel Sessions: Novel Observables \& Building on Lessons Learned

Speakers:

Phiala Shanahan, James Maxwell, Tanja Horn, Cédric Mezrag; Sergei Alekhin, Michael Murray, Christophe Royon, Jan Bernauer

Ian Cloët
 Argonne National Laboratory

The Electron Ion Collider User Group Meeting Argonne, 7-9 July 2016
U.S. DEPARTMENT OF

Exotic Glue in the Nucleus?
 Gluonic Transversity Structure Functions from Lattice QCD

Phiala Shanahan, Will Detmold

Massachusetts Institute of Technology

$$
\text { July 8, } 2016
$$

'Exotic' Glue
 Contributions to gluon observables that are not from nucleon degrees of freedom.

Exotic glue operator: operator in nucleon $=0$ operator in nucleus $\neq 0$

Double Helicity Flip Gluon Structure Function: $\Delta\left(x, Q^{2}\right)$

Jaffe and Manohar (1989)

Leading-twist, double-helicity-flipping structure function $\Delta\left(x, Q^{2}\right)$ sensitive to exotic glue in the nucleus

- Clear signature for exotic glue in nuclei with spin ≥ 1 : NO analogous twist-2 quark PDF \rightarrow unambiguous
- Experimentally measurable (JLab LOI 2016, James Maxwell's talk)
- Moments are calclable on the lattice

First Lattice Study: arXiv:1606.04505

- First moment of $\Delta\left(x, Q^{2}\right)$ in spin-1 ϕ (or ρ) meson

Double Helicity Flip Gluon Structure Function: $\Delta\left(x, Q^{2}\right)$

Double helicity flip amplitude:

$$
\Delta\left(x, Q^{2}\right)=A_{+-,-+}=A_{-+,+-}
$$

UNRENORMALISED reduced matrix element: ϕ meson

Search for Exotic Gluonic States In the Nucleus

J. Maxwell

with W. Detmold, R. Jaffe, R. Milner, P. Shanahan

Jefferson Lab

EIC User Group Meeting July 8th, 2016

Double Helicity Flip Structure Function $\Delta\left(x, Q^{2}\right)$

- $\Delta\left(x, Q^{2}\right)$ corresponds to helicity amplitude $A_{+-,-+}$
- Photon helicity flip of two
- Unavailable to bound nucleons or pions in the nucleus
- Virtual ρ or Δ ? Gluons not associated with a nucleon?

- New lattice QCD result for first moment of $\Delta\left(x, Q^{2}\right)$ in a ϕ meson is preliminary, but very promising ${ }^{1}$
- Primary challenge of measurement is polarized target or source
${ }^{1}$ Detmold, Shanahan, arXiv:1606.04505

Measuring $\Delta\left(x, Q^{2}\right)$ via DIS

- Transversely aligned, spin- 1 target and unpolarized electron incident from - z
- In the Bjorken limit, double helicity component of the hadronic tensor $W_{\mu \nu, \alpha \beta}^{\Delta=2}\left(E, E^{\prime}\right)$ becomes (dropping higher twist structure functions $)^{1}$:

$$
\begin{aligned}
\lim _{Q^{2} \rightarrow \infty} \frac{d \sigma}{d x d y d \phi}=\frac{e^{4} M E}{4 \pi^{2} Q^{4}} & \left(x y^{2} F_{1}\left(x, Q^{2}\right)+(1-y) F_{2}\left(x, Q^{2}\right)\right. \\
& \left.-\frac{x(1-y)}{2} \Delta\left(x, Q^{2}\right) \cos 2 \phi\right)
\end{aligned}
$$

[^0]
3 ways to measure $\Delta\left(x, Q^{2}\right)$

(1) Leverage $\cos (2 \phi)$ to isolate $\Delta\left(x, Q^{2}\right)$ dependence

- Need azimuthal detector acceptance
(2) Form tensor asymmetry: $\mathcal{A}=\frac{1}{A} \frac{N_{+}+N_{-}-2 N_{0}}{N_{+}+N_{-}+2 N_{0}}$
- $\theta_{m}=54.7^{\circ}$ to cancel b_{1}, b_{2} dependence
- Change polarization to produce N_{+}, N_{-}and N_{0} yields
(3) Form difference of vector polarized and unpolarized cross sections
- $\theta_{m}=54.7^{\circ}$ to cancel b_{1}, b_{2} dependence
- Lose cancellation of acceptances, efficiencies

Electron-Ion Collider Approach

$\left(3 \cos ^{2} \theta_{m}-\left(4+\frac{1-y}{x y^{2}} b_{2}\right)-\frac{1-y}{y^{2}} \sin ^{2} \theta_{m} \Delta\left(x, Q^{2}\right) \cos (2 \phi)\right.$
(1) $\cos (2 \phi)$ offers $\Delta\left(x, Q^{2}\right)$ sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable
(2) Form tensor asymmetry: $\mathcal{A}=\frac{1 N_{+}+N_{-}-2 N_{0}}{A N_{+}+N_{-}+2 N_{0}}$
- Set target at $\theta_{m}=54.7^{\circ}$
- Yields at N_{+}, N_{-}and N_{0} separated in time: systematic headaches
3 Form difference of vector polarized and unpolarized cross sections
- Set target at $\theta_{m}=54.7^{\circ}$
- Lose advantage of asymmetry, still have systematic headaches

Pion and Kaon Structure Functions

Tanja Horn

The
Catholic University
of America

Jefferson Lab
beyond the science of

Collaboration with Roy Holt, Paul Reimer, Rolf Ent Thanks to: Ian Cloet, Craig Roberts, Yulia Furletova and Steve Wood

Why should you be interested in pions and kaons?

Protons, neutrons, pions and kaons are the main building blocks of nuclear matter

1) The pion, or a meson cloud, explains light-quark asymmetry in the nucleon sea
2) Pions are the Yukawa particles of the nuclear force - but no evidence for excess of nuclear pions or anti-quarks
3) Kaon exchange is similarly related to the $\Lambda \mathrm{N}$ interaction - correlated with the Equation of State and astrophysical observations
4) Mass is enigma - cannibalistic gluons vs massless Goldstone bosons

Equations of state and neutron star mass-radius relations

3

World Data on pion structure function $F_{2}{ }^{\boldsymbol{\pi}}$

Good Acceptance for $\mathrm{n}, \Lambda, \Sigma$ detection

Sullivan process for pion SF

And similar process for kaon SF

Process	Forward Particle	Geometric Detection Efficiency (at small -t$)$
${ }^{1} \mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{+}\right) \mathrm{n}$	N	$>20 \%$
${ }^{1} \mathrm{H}\left(\mathrm{e} \mathrm{e}^{\prime} \mathrm{K}^{+}\right) \Lambda$	Λ	50%
${ }^{1} \mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{K}^{+}\right) \Sigma$	Σ	17%

Simulations assume: 5 GeV electrons and 50 GeV protons @ luminosity of $10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$

World Data on pion structure function $F_{2}{ }^{\pi}$

HERA

EIC

\downarrow roughly $\mathrm{x}_{\text {min }}$ for EIC projections

Kaon structure functions - gluon pdfs

Based on Lattice QCD calculations and DSE calculations:
Valence quarks carry 52\% of the pion's momentum at the light front, at the scale used for Lattice QCD calculations, or roughly 65% at the perturbative hadronic scale

- At the same scale, valence-quarks carry $2 / 3$ of the kaon's light-front momentum, or roughly 95% at the perturbative hadronic scale

Thus, at a given scale, there is far less glue in the kaon than in the pion:
> heavier quarks radiate less readily than lighter quarks
> heavier quarks radiate softer gluons than do lighter quarks
> Landau-Pomeranchuk effect: softer gluons have longer wavelength and multiple scatterings are suppressed by interference.
> Momentum conservation communicates these effects to the kaon's u-quark.

Nucleon Distribution Amplitudes

C. Mezrag

Argonne National Laboratory

May $5^{\text {th }}, 2016$

In collaboration with:
C.D. Roberts

Proton distribution amplitude

What happens when computing the Proton DA within DSEs framework?

Quark-Diquark DA

- Need of specific ingredients:
- quark propagator $S_{u}\left(S_{d}\right)$,
- AV diquark propagator $S_{u u}$,
- diquark Bethe-Salpeter amplitude $\Gamma_{u u}$,
- nucleon Bethe-Salpeter amplitude $\Gamma_{d ; u u}$.
- Different contributions for the $|u(\uparrow) u(\downarrow) d(\uparrow)\rangle$ state:
- 1 contribution for the scalar diquark
- 3 different contributions for the AV diquark

All these objects can be computed non-pertubatively using DSEs-BSEs.

Preliminary results

Caveat: transversely polarised diquark is missing

Asymptotic

$\begin{array}{lllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\ & & & & & \mathbf{u}\left(x_{1}\right)\end{array}$
70\%Scalar 30\% AV

100\% Scalar

$\begin{array}{lllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\ & & & & \mathbf{u}\left(X_{1}\right) & & \end{array}$

100% AV

ABMP16 PDFs

S.Alekhin (Univ. of Hamburg \& IHEP Protvino)
 (in collaboration with J.Blümlein, S.Moch, and R.Plačakytè)

- Drell-Yan data from the LHC and Tevatron: Isospin asymmetry and d/u at large x
- HERA I+II data: $\alpha_{s}\left(M_{z}\right), m_{c}$, and m_{b}
- Charm production data from NOMAD and CHORUS: strange sea
- t-quark data: m_{t} and gluon distribution

Collider W\&Z data used in the fit

${ }^{a}$ Statistically less significant data with the cut of $P_{T}^{\mu}>35 \mathrm{GeV}$ are used.

Inclusive HERA I+II data

HERA I+II (\mathbf{e}^{+}p)

Q^{2} (HERA) $\quad \chi^{2} /$ NDP(HERA)
$>2.5 \mathrm{GeV}^{2} \quad 1505 / 1168=1.29$
$>5 \mathrm{GeV}^{2} \quad 1350 / 1092=1.24$
$>10 \mathrm{GeV}^{2} \quad 1225 / 1007=1.22$

HERA I+II ($\mathbf{e}^{-} \mathbf{p}$)

H1 and ZEUS

The value of $\chi^{2} /$ NDP is bigger than 1 , however still comparable to the pull distribution width

α_{s} updated

- α_{s} goes up by 1σ with HERA I+II data
- the value of α_{s} is still lower than the PDG one: pulled up by the SLAC and NMC data; pulled down by the BCDMS and HERA ones
- only SLAC determination overlap with the PDG band provided the high-twist terms are taken into account

Nuclear PDFs at the LHC

Michael Murray University of Kansas

Running modes

Collider

In addition ultra-peripheral collisions produce photon - lead collisions with an energy range $W_{\gamma p}=20-800 \mathrm{GeV}$

Kinematic Range of LHC

Ultra-peripheral PbPb

First attempt to use UPCs in nPDFs

Before
 Now

Experience on diffraction at HERA and at the LHC towards the EIC

Christophe Royon
University of Kansas, Lawrence, USA

EIC Users Meeting, Argonne National Lab., July 5-9 2016

Contents:

- Diffraction at HERA
- Vector meson production
- PDFs in Pomeron
- Factorization breaking

The HERA accelerator at DESY, Hamburg
HERA: ep collider who closed in 2007, about $1 \mathrm{fb}^{-1}$ accumulated

Diffractive kinematical variables

- Momentum fraction of the proton carried by the colourless object (pomeron): $x_{p}=\xi=\frac{Q^{2}+M_{X}^{2}}{Q^{2}+W^{2}}$
- Momentum fraction of the pomeron carried by the interacting parton if we assume the colourless object to be made of quarks and gluons: $\beta=\frac{Q^{2}}{Q^{2}+M_{X}^{2}}=\frac{x_{B j}}{x_{P}}$
- 4-momentum squared transferred: $t=\left(p-p^{\prime}\right)^{2}$

An example: J / Ψ in photoproduction

- Hard scale present due to J / Ψ mass $\left(Q^{2} \sim 0\right)$
- Description using perturbative QCD and dipole model: Pomeron is modeled by a gluon ladder at lowest order: $\sigma \sim\left[\alpha_{S}\left(\mu^{2}\right) x g\left(x, \mu^{2}\right)\right]^{2}$

Conclusion

- Many physics topics studied at HERA can be studied with higher precision at the EIC: only a few examples given here
- Vector meson production: study the interface of perturbative/non-perturbative QCD
- Measurement of parton densities in diffractive events: higher precision, use structure function measurements, jets, charm...
- Study survical effects: using $\gamma-\mathrm{p}$ events as an example
- Study BFKL resummation effects and saturation phenomena: important to have a good coverage in the forward directions in order to measure very forward jets, can be also studied in diffractive events
- Exclusive diffraction
- Many topics to be studied at the EIC benefitting from the experience at HERA, Tevatron and LHC

Unique opportunities to measure proton elastic form factors at EIC

Jan C. Bernauer

EIC UG Meeting, July 2016

IIIT

Massachusetts Institute of Technology

History of unpolarized electron-proton scattering

F.F. summary: Collider kinematics

- Can measure proton electric radius without Two-Photon-Exchange effects
- G_{M} at large Q^{2} : count rate very small

F.F. summary: "Race" kinematics

Spline fit
statistical uncertainty
stat+systematical uncertainty
variation of Coulomb correction

- Unique opportunity to measure low- $Q^{2} G_{M}$ and magnetic radius

F.F. summary: Polarization variables

Blatantly stolen from C. Sofiatti and T. W. Donnelly,"Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)
$2 @ 50 \mathrm{GeV}$

$10 @ 250 \mathrm{GeV}$

- Can study e/m form factor ratios
- Or: Take from fixed target experiments \Longrightarrow measurement of beam polarization product
- PV also in reach

Clearly tremendous physics potential for an EIC!

Must build a machine that can truly deliver the physics we are promising

[^0]: ${ }^{1}$ Jaffe, Manohar, Phys Letters B 223 (2) (1989).

