Unique opportunities to measure proton elastic form factors at EIC

Jan C. Bernauer

EIC UG Meeting, July 2016

Massachusetts Institute of Technology

Cross section and form factors for elastic lepton-proton scattering

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon \left(1 + \tau\right)} \left[\varepsilon G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right) \right]$$

with:
$$au = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

Fourier-transform of G_E , $G_M \longrightarrow$ spatial distribution (Breit frame)

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}(G_{M}/\mu_{p})}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

History of unpolarized electron-proton scattering

Collider kinematics

Idea from C. Sofiatti and T. W. Donnelly,"Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)

Collider kinematics

Idea from C. Sofiatti and T. W. Donnelly,"Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)

G_M at large Q^2

Motivation

- Not much data at high Q^2 . Does G_M cross 0?
- clean signal
- $\varepsilon \sim 1$: Two photon exchange suppressed

G_M at large Q^2

Motivation

- Not much data at high Q^2 . Does G_M cross 0?
- clean signal
- $\varepsilon \sim 1$: Two photon exchange suppressed

Collider kinematics

Idea from C. Sofiatti and T. W. Donnelly,"Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)

The Proton Puzzle

The Proton Puzzle

From the 2014 Review of Particle Physics

Until the difference between the ep and μp values is understood, it does not make sense to average the values together. For the present, we give both values. It is up to the workers in this field to solve this puzzle.

Form factors at very small Q^2

- Is extrapolation invalid?
- Structure at low Q^2 ?

- High resolution, large acceptance hybrid calorimeter+GEM
- Windowless target
- ${\ {\circ} \ }$ Simultaneous measure ep ${\ {\rightarrow} \ }$ ep and Møller scattering
- Q² range: 2×10^{-4} to 2×10^{-2} (GeV/c)²

G_E at small Q^2

G_E at small Q^2 : benefits and feasibility

Benefits

- $\varepsilon = 1$, no hard Two-Photon-Exchange
- minimal contribution from G_M
- No background

- Collider kinematics: Project out forward angles of fixed target frame
- Can we access backward angles?

- Collider kinematics: Project out forward angles of fixed target frame
- Can we access backward angles?
- Yes! Have same direction for proton and lepton! Lepton races the proton (and proton loses)
- Technically feasible?! Reverse electron ring or use positrons!

"Race" kinematics: Possibilities

"Race" kinematics: Possibilities

Proton magnetic form factor

- Up-Down-Up structure
- Not seen before
 - Older fits approach from below
 - Lack of data
- Gives rise to small r_m
- Sensitive to radiative corrections

Proton magnetic form factor

- Up-Down-Up structure
- Not seen before
 - Older fits approach from below
 - Lack of data
- Gives rise to small r_m
- Sensitive to radiative corrections

Benefits

- $\varepsilon = 0$, no G_E contribution (but two-photon exchange!)
- completely different systematic

Challenges

- Low particle momentum
- Count rate

"Race" kinematics: particle momentum

"Race kinematics: luminosity

- In principle: Want to have different arepsilon
- Vary angle between incoming beams!
- Technically "challenging"

Polarization variables

Blatantly stolen from C. Sofiatti and T. W. Donnelly, "Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)

2 @ 50 GeV

10 @ 250 GeV

Polarization variables

Blatantly stolen from C. Sofiatti and T. W. Donnelly, "Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)

2 @ 50 GeV

10 @ 250 GeV

Conclusion

Collider kinematics

- Small Q: Can measure G_E for radius, clean signal
- Large Q: G_M reachable, but low count rate

"Race" kinematics

- Very unusual kinematical region
- *G_M* at small Q, unique opportunity for magnetic radius

Polarization

- Double asymmetry: Use as a polarimeter
- PV reachable

To-do

• Experimental feasibility: Backgrounds, PID etc.

F.F. summary: Collider kinematics

- Can measure proton electric radius without Two-Photon-Exchange effects
- G_M at large Q^2 : count rate very small

F.F. summary: "Race" kinematics

 Unique opportunity to measure low-Q² G_M and magnetic radius

F.F. summary: Polarization variables

Blatantly stolen from C. Sofiatti and T. W. Donnelly, "Polarized e-p Elastic Scattering in the Collider Frame," Phys. Rev. C 84, 014606 (2011)

- Can study e/m form factor ratios
- Or: Take from fixed target experiments
 measurement of beam polarization product
- PV also in reach