

Determining Large x PDFs at JLEIC – a work in progress 2^{12}

EIC Users Group Meeting Argonne National Lab, July 2016 Jefferson Lab

CJ15 (T = 10)

1.6

Parton Distribution Functions (PDFs)

- Provide fundamental information regarding nucleon and nuclear structure
- Knowledge of the interaction initial state, and hence the PDFs, is critical to precision measurements at hadron colliders
 - Sensitivity to new physics, new heavy particles, requires better knowledge of large x PDFs

Large x (x > 0.05) -> Large PDF Uncertainties

Nucleon Structure Function Measurements

Proton –

- F₂^p measured over > 5 orders of magnitude in x, Q² by dozens of experiments at numerous laboratories and for decades
- Well described by DGLAP, global PDF fits
- Translates to small uncertainties on u(x)

Neutron –

- No free neutron target
- Historically difficult to extract neutron from deuteron uncertainties from nuclear corrections
- F₂^d not as well measured asF₂^p
- Translates to large uncertainties on d(x)

F_2^n/F_2^p (and, hence, d/u) is essentially unknown at large x:

- Conflicting fundamental theory pictures
- Data inconclusive due to uncertainties in deuterium nuclear corrections
- Translates directly to large uncertainties on d(x), g(x) PDFs

g(x) is poorly known at large (and small) x...

Can the EIC help?

- Different data constrain different parton combinations at different x
- Scaling violation studies require range in both x, Q² not currently possible at large x without the EIC
- Would like to have both F_2^n and F_2^p possible with planned EIC spectator tagging capabilities

 To begin investigating possibilities, we used projected data kinematics and uncertainties, and the "CJ" global PDF fit...

CTEQ-Jefferson Lab "CJ" PDF Fits

Phys. Rev. D81:034016 (2010) Phys. Rev. D87:094012 (2013) Phys. Rev. D84:014008 (2011) Phys. Rev. D93 114017 (2016)

PDFs at http://lhapdf.hepforge.org/lhapdf5/pdfsets

CJ collaboration: http://www.jlab.org/CJ

Goals:

- Extend CTEQ fit to larger values of x and lower values of Q^2
- Incorporate data previously subject to kinematic cuts (SLAC and JLab largely)

To accomplish this:

- Need to relax conventional cuts defining "safe" region for issues such as higher twist, target mass will now need to take these into account
- Allow d/u to go to a constant (not just $(1-x)^a$ type form)
- Need accurate deuteron nuclear corrections

Improved Extraction of F_2^n from F_2^d and F_2^p

<u>New method</u>: employs iterative procedure of solving integral convolution equations

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

Impulse Approximation - virtual photon scatters incoherently from individual nucleons

(Beyond IA: FSI not addressed in present analysis) $\widetilde{\mathcal{F}}^n(x) = \mathcal{N} \ \mathcal{F}^n(x) + (\delta f \otimes \mathcal{F}^n)(x)$ $\begin{bmatrix} F_2^A(x,Q^2) \\ R_2^A(x,Q^2) \end{bmatrix} = \sum_{N=p,n} \int_x^{M_A/M} dy \begin{bmatrix} f_0^{N/A}(y,\gamma) \\ r_2^A(y,\gamma) \end{bmatrix} F_2^N\left(\frac{x}{y},Q^2\right) \qquad \gamma = \sqrt{1 + \frac{4M^2 x^2}{Q^2}}$ light-cone nuclear F₂ nucleon F₂ momentum $\left(f_0^{N/A}\otimes F_2^N\right)(x,Q^2)$ distribution of nucleons in nucleus (smearing function) Convolution of light cone momentum distribution on Application to Deuterium... nucleons in nucleus

CJ15 Global Fit

Phys. Rev. D93 114017 (2016)

State-of-the-art in large x PDFs

- > 50% uncertainty on d(x) above x ~ 0.6
- > 50% uncertainty on g(x) above x ~ 0.2

F_2^n better constrained

Tagged Structure Functions at the EIC

The technique is uniquely suited to colliders: no target material absorbing low-momentum nucleons

🍘 💎

Tagged Structure Functions at HERA – Example: proton tag

EIC: Full Acceptance for Forward Physics!

Example: acceptance for p' in $e + p \rightarrow e' + p' + X$

Huge gain in acceptance for forward tagging to measure F₂ⁿ and diffractive physics!!!

(Tagged) Neutron Structure Extrapolation in t

- t resolution better than 20 MeV, < fermi momentum
- Resolution limited/given by ion momentum spread
- Allow precision extraction of F₂ⁿ neutron structure function

(Tagged) Neutron Structure Extrapolation in t

- 1 year of EIC @ luminosity of 10³² gives about 1 fb⁻¹
- 1 year of EIC @ luminosity of 10³³ gives about 10 fb⁻¹
- 1 year of EIC @ luminosity of 10³⁴ gives about 100 fb⁻¹

Data so far being considered in CJ fit projection study....

So far, have used JLEIC 10x100 GeV² projections in bins 0.1 < x < 0.9 for:

- ✓ F₂^p
- ✓ F_2^n from deuterium with tagged proton spectator
- F₂^d

Can check on-shell extrapolation by measuring F₂^p from deuterium with tagged neutron spectator, comparing to proton target data

Can check nuclear corrections to F_2^d against $F_2^{n (tagged)}$

- Finally will be able to distinguish between models!
- Assume 1% systematic uncertainty
- $W^2 > 3.5 \text{ GeV}^2$ and $Q^2 > 1.69 \text{ GeV}^2$ (standard CJ15 cuts)
- A simple study so far (first results hot off the press)...

F_2^p (tagged) pseudodata vs x

Compressed scale makes it somewhat difficult to see the experimental and fit uncertainties

Currently no cut in y:

- would loose a little bit in the high Q² range from y<ymax, unlikely a problem since ymax ~0.85.
- would loose some low Q²
 leverage at large x from a
 y_min cut, might have impact
 on the gluon fits
- requires more careful simulations

10/fb luminosity

CJ15

CJ15+F2p+F2ntag 10/fb

CJ15+F2p+F2ntag+F2d 10/fb

Top: improvement in relative **PDF** uncertainties compared to CJ15

Bottom: relative CJ15 CJ15+F2p 10/fb $_{\tiny CJ15+F2p+F2ntag+F2d\,10/fb}^{CJ15+F2p+F2ntag\,10/fb}$ uncertainties compared to **CJ15**

> Improvement in u impressive, but already small uncertainty

- Large improvement in d(x), ~50% CJ15+F2p 10/fb
 - d/u tracks d

Jefferson Lab

~20% improvement in g(x)

100/fb luminosity

- d quark precision will become comparable to current u!!
- CJ15
 CJ15+F2p
 CJ15+F2p+F2ntag
 CJ15+F2p+F2ntag+F2d
 - The u quark uncertainty becomes less than ~1%; may be important for large mass BSM new particles.
 - With d quark nailed by F₂ⁿ, fitting F₂^d data will explore details of nuclear effects

Improved d(x) precision is good news

• The d-quark goes from a few 10% to ~1% percent level

- Resolve long-standing mystery of d/u at large x, bell-weather for fundamental models of nucleon structure
- D/(p+n) in one experiment for the first time unprecedented handle on nuclear medium modifications
- Facilitate accurate neutron excess/isoscalar corrections
 - Important also for neutrino physics and nuclear PDFs

Improved g(x) precision also good news

- The gluons improve by a bit less than 10% per data set included, with the improvement seemingly independent of luminosity
 - Possibly gluons are accessed by the F_2 shape in Q^2 , so that the precision of each data point is not very important, while the lever arm in Q^2 matters most
- If true, expect that adding new measurements we will continue to improve the gluons: for example, adding energy scans at 3+100 and 6+100 may reach a global improvement in the large-x gluons closer to 80%.
- Energy scans could also allow for direct access of gluons from F_L .
- Need more work to confirm above

A 10/fb e-p run and an 100/fb e-d run (*with e-n_{tag}*!) reduces the u uncertainty to better than 1% and the d uncertainty down to 5% at x = 0.9.

The gluon will also be significantly improved, but...

Still a work in progress, need to:

- Study more energy combinations
- Study y cut
- Evaluate also F_L
- Expand x binning
- Optimize grid

Thank you!

Backups

$F_2^{p} - F_2^{n}$ yields non-singlet distribution

- At moderate x (~0.3), singlet comparable to non-singlet
- Large uncertainties on singlet distribution

 in structure function measurements, comes from (small) scaling violations in F₂
- Q² evolution is simpler for the non-singlet (reduced number of splitting functions)
- Assuming a charge-symmetric sea, p-n isolates the non-singlet
- Such measurements provide a direct handle on the quark structure of the nucleon
- Also, need to pin down non-singlet (p-n) to extract singlet (complementary to F_L)

Example: Higgs production by gluon fusion

 This is the main production mechanism for a Higgs at the LHC

To calculate the cross section for this process in pp collisions, we need to know the gluon PDF