Quark Helicity at Small x

Matthew D. Sievert

with Daniel Pitonyak

and Yuri Kovchegov

Friday July 8, 2016

EIC User Group Meeting 2016

Overview

Small-x Helicity Evolution

• Quark helicity at very small x evolves by the radiation of soft polarized quarks and gluons.

Overview

Small-x Helicity Evolution

- Quark helicity at very small x evolves by the radiation of soft polarized quarks and gluons.
- Early work on helicity evolution suggested a rapid growth of quark polarization at small x.

Bartels, Ermolaev, & Ryskin,
Z. Phys. C70 (1996)
Z. Phys. C72 (1996),

Overview

Small-x Helicity Evolution

- Quark helicity at very small x evolves by the radiation of soft polarized quarks and gluons.
- Early work on helicity evolution suggested a rapid growth of quark polarization at small x.

Bartels, Ermolaev, & Ryskin, Z. Phys. **C70** (1996) Z. Phys. **C72** (1996),

• Our modern s-channel formalism generalizes these equations, suggesting weaker growth at small x.

Kovchegov, Pitonyak, & MS JHEP 1601 **072** (2016), + (in preparation) Motivation: Proton Spin Puzzle

• The "Proton Spin Budget" is described by the Jaffe-Manohar Sum Rule.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Motivation: Proton Spin Puzzle

- The "Proton Spin Budget" is described by the Jaffe-Manohar Sum Rule.
- Modern measurements cannot account for the total spin of the proton!
 - → Quark spins from polarized DIS
 - Gluon spins from in polarized proton-proton collisions

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

DSSV ('09-'14) fits: data from 0.001 < x < 1

$$\Delta \Sigma \approx 0.25 \ (25\%)$$

 $\Delta G \approx 0.2 \ (40\%)$

Motivation: Proton Spin Puzzle

- The "Proton Spin Budget" is described by the Jaffe-Manohar Sum Rule.
- Modern measurements cannot account for the total spin of the proton!
 - → Quark spins from polarized DIS
 - Gluon spins from in polarized proton-proton collisions
- Proton structure is much more complex than previously believed!
 - Orbital angular momentum?

Polarization at very small x?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

DSSV ('09-'14) fits: data from 0.001 < x < 1

$$\Delta \Sigma \approx 0.25 \ (25\%)$$

 $\Delta G \approx 0.2 \ (40\%)$

$$\phi_{\alpha\beta}(x,\vec{k}_{\perp}) = \int \frac{d^{2-r}r}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \bar{\psi}_{\beta}(0) \mathcal{U}[0,r] \psi_{\alpha}(r) | h(p,S) \rangle$$

Transverse Momentum Dependent Parton Distribution Functions

TMD's at Large x

Semi-Inclusive Deep Inelastic Scattering (SIDIS) $e + p \rightarrow e' + h + X$

Large-x Kinematics:

$$\hat{s} \sim Q^2 \gg k_T^2$$
$$x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1)$$

TMD's at Large x

Semi-Inclusive Deep Inelastic Scattering (SIDIS) $e + p \rightarrow e' + h + X$

Large-x Kinematics:

$$\hat{s} \sim Q^2 \gg k_T^2$$

 $x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1)$

- Photon knocks out a quark from the proton.
- Propagates through the gauge field before escaping

TMD's at Large x

Semi-Inclusive Deep Inelastic Scattering (SIDIS) $e + p \rightarrow e' + h + X$

Large-x Kinematics:

$$\hat{s} \sim Q^2 \gg k_T^2$$
$$x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1)$$

- Photon knocks out a quark from the proton.
- Propagates through the gauge field before escaping
- Staple-shaped gauge link encodes final-state interactions

TMD's at Small x

Small-x Kinematics:
$$\hat{s} \gg Q^2 \gg k_T^2$$

 $\ell_{coh} \sim \frac{1}{m_N x}$ $x = \frac{Q^2}{\hat{s}} \ll 1$

TMD's at Small x

 Photon creates a quark / antiquark pair which propagates through the proton.

Quark transport is x-suppressed.

TMD's at Small x

Small-x Initial Conditions: Classical Gluon Fields

- Long-lived projectile sees whole target coherently.
- High gluon density at small x enhances multiple scattering

Small-x Initial Conditions: Classical Gluon Fields

- Long-lived projectile sees whole target coherently.
- High gluon density at small x enhances multiple scattering
- High density rescattering can be systematically re-summed
- Classical gluon fields!

Nucleus: $\alpha_s^2 A^{1/3} \sim 1$ Proton: $\alpha_s \rho \sim 1$

Small-x Initial Conditions: Classical Gluon Fields

- Long-lived projectile sees whole target coherently.
- High gluon density at small x enhances multiple scattering
- High density rescattering can be systematically re-summed
- → Classical gluon fields!

Nucleus: $\alpha_s^2 A^{1/3} \sim 1$ Proton: $\alpha_s \rho \sim 1$

• Charge density defines a hard momentum scale which screens the IR gluon field.

Both:
$$egin{array}{lll} Q_s^2 \propto lpha_s^2 A^{1/3} \propto lpha_s
ho \ Q_s^2 \gg \Lambda^2 \end{array}$$

M. Sievert

Quantum Evolution in the Light-Cone Gauge

High-energy radiation from a ⊕ moving particle couples to A⁻
 In A⁻ = 0 gauge this radiation is suppressed.

Quantum Evolution in the Light-Cone Gauge

• High-energy radiation from a \oplus moving particle couples to A^-

 \Rightarrow In $A^- = 0$ gauge this radiation is suppressed.

- Quantum evolution requires long lifetimes to generate logarithms of a large phase space.
- Instantaneous t-channel particles do not evolve either.
- \Rightarrow All evolution takes place within the \ominus moving particles.

Quantum Evolution in the Light-Cone Gauge

• High-energy radiation from a \oplus moving particle couples to $A^ \Rightarrow \ln A^- = 0$ gauge this radiation is suppressed.

- Quantum evolution requires long lifetimes to generate logarithms of a large phase space.
- Instantaneous t-channel particles do not evolve either.
- \Rightarrow All evolution takes place within the \ominus moving particles.

• For classical fields and leading-log evolution, $A_{\perp} = 0$ as well.

The transverse part of the gauge link does not contribute.

Unpolarized Small-x Evolution

$$S_{xy} = \frac{1}{N_c} \operatorname{Tr} \left[V_x V_y^{\dagger} \right]$$

• The quark dipole radiates soft gluons before and after scattering. \Rightarrow Evolution of the dipole scattering amplitude \Rightarrow Re-sums single logarithms of x $\alpha_s \ln \frac{1}{x} \sim 1$

Unpolarized Small-x Evolution

• The quark dipole radiates soft gluons before and after scattering. \Rightarrow Evolution of the dipole scattering amplitude \Rightarrow Re-sums single logarithms of x • Some radiated gluons also rescatter in the target gauge field.

➡ Non-linear evolution with a hierarchy of operators

Unpolarized Small-x Evolution

• The quark dipole radiates soft gluons before and after scattering. Evolution of the dipole scattering amplitude $\alpha_s \ln \frac{1}{r} \sim 1$ \rightarrow Re-sums single logarithms of x • Some radiated gluons also rescatter in the target gauge field. \rightarrow Non-linear evolution with a hierarchy of operators

• Evolution closes in the large N_c limit (BK eqn.) $Q_s^2(x) \sim \left(\frac{1}{r}\right)^{0.3}$

High energy (small x) scattering is predominantly spin independent.
 BK evolution: total cross section, unpolarized quark distribution.

Leading-Order Spin Dependence

• High energy (small x) scattering is predominantly spin independent.

BK evolution: total cross section, unpolarized quark distribution.

Transporting quark polarization to small x is suppressed!

Spin asymmetries, polarized quarks are suppressed at small x.

Leading-Order Spin Dependence

High energy (small x) scattering is predominantly spin independent.
 BK evolution: total cross section, unpolarized quark distribution.

Transporting quark polarization to small x is suppressed!

Spin asymmetries, polarized quarks are suppressed at small x.

Sub-leading gluon exchange can also transfer spin dependence.

Gluon exchange can mix with quark exchange.

Spin-Dependent Initial Conditions

"Polarized Wilson Line" - Coherent, spin-dependent scattering.
 One spin-dependent exchange (more are suppressed)
 Dressed by multiple unpolarized scattering

Spin-Dependent Initial Conditions

- "Polarized Wilson Line" Coherent, spin-dependent scattering.
- One spin-dependent exchange (more are suppressed)
- Dressed by multiple unpolarized scattering

• "Polarized Dipole Amplitude":

Quark (gauge link) scatters by an unpolarized Wilson line.
 Fermion (antiquark) scatters by a polarized Wilson line.

$$G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^{\dagger}(\sigma) + V_y(\sigma) V_x^{\dagger} \right]$$

Constructing Polarized Splitting Kernels

Kernels: Spin-dependent quark / gluon wave functions
 Soft quarks and soft gluons can mix (same order)

Constructing Polarized Splitting Kernels

Kernels: Spin-dependent quark / gluon wave functions
 Soft quarks and soft gluons can mix (same order)

• Requires longitudinal ordering and lifetime ordering $1 \gg z_1 \gg z_2 \gg \cdots \gg x$ $\frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \cdots$ Includes "infrared" phase space: $k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}$

Constructing Polarized Splitting Kernels

• Kernels: Spin-dependent quark / gluon wave functions \rightarrow Soft quarks and soft gluons can mix (same order)

 Requires longitudinal ordering and lifetime ordering $\frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \cdots$ $1 \gg z_1 \gg z_2 \gg \cdots \gg x$

Includes "infrared" phase space: $k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}$

 $\alpha_s \ln^2 \frac{1}{r} \sim 1$

Leads to double-log evolution.

 \rightarrow Faster evolution than unpolarized BK!

Solution: Ladder Evolution

• To solve, first keep only the kernels without unpolarized rescattering.

 $\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{dk_T^2}{k_T^2} \begin{pmatrix} C_F & 2C_F \\ -N_f & 4N_c \end{pmatrix}$

Solution: Ladder Evolution

• To solve, first keep only the kernels without unpolarized rescattering.

$$\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{dk_T^2}{k_T^2} \begin{pmatrix} C_F & 2C_F \\ -N_f & 4N_c \end{pmatrix}$$

• Solve by Mellin transform and $\alpha_s = 0.3$ saddle point approximation. $N_c = N_f = 3$ $G_{01} \sim \left(\frac{1}{x}\right)^{1.46}$

Solution: Ladder Evolution

• To solve, first keep only the kernels without unpolarized rescattering.

$$\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{dk_T^2}{k_T^2} \begin{pmatrix} C_F & 2C_F \\ -N_f & 4N_c \end{pmatrix}$$

• Solve by Mellin transform and $\alpha_s = 0.3$ saddle point approximation. $N_c = N_f = 3$ $G_{01} \sim \left(\frac{1}{x}\right)^{1.46}$

• Fast growth of quark polarization at small x!	
Large contribution to the proton spin?	

 $S_{01} \sim \left(\frac{1}{x}\right)^{0.3}$

The Complication: Non-Ladder Graphs

• Double-log evolution is also generated by non-ladder graphs

Starting at 2-loop order, polarization transfer can "jump" rungs of ladder evolution

The Complication: Non-Ladder Graphs

• Double-log evolution is also generated by non-ladder graphs

Starting at 2-loop order, polarization transfer can "jump" rungs of ladder evolution

• Quark and antiquark non-ladder graphs cancel $G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^{\dagger}(\sigma) + V_y(\sigma) V_x^{\dagger} \right]$

The Complication: Non-Ladder Graphs

• Double-log evolution is also generated by non-ladder graphs

Starting at 2-loop order, polarization transfer can "jump" rungs of ladder evolution

• Quark and antiquark non-ladder graphs cancel $G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^{\dagger}(\sigma) + V_y(\sigma) V_x^{\dagger} \right]$

• But gluon non-ladder graphs do not cancel.

Ladder evolution is an unjustified truncation

A Mess of Non-Ladder Gluons

- Non-ladder gluons can stack in complex ways which still generate double logarithms.
- Polarized gluons can "jump multiple rungs" of evolution

A Mess of Non-Ladder Gluons

- Non-ladder gluons can stack in complex ways which still generate double logarithms.
- Polarized gluons can "jump multiple rungs" of evolution
- Intermediate gluon emission can even be unpolarized!

A Mess of Non-Ladder Gluons

- Non-ladder gluons can stack in complex ways which still generate double logarithms.
- Polarized gluons can "jump multiple rungs" of evolution
- Intermediate gluon emission can even be unpolarized!
- Makes it difficult to use standard small-x methods like the stochastic / functional description of unpolarized JIMWLK evolution

Ladder Graphs:

$$\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_1^{pol\dagger}] \rangle \rangle(z) = \frac{\alpha_s}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{01}^2 \frac{z}{z'}} \frac{dx_{21}^2}{x_{21}^2} 2 \frac{1}{N_c} \langle \langle \operatorname{Tr}[T^b V_0 T^a V_1^{\dagger}] (U_2^{pol})^{ba} \rangle \rangle(z')$$

$$+\frac{\alpha_s}{2\pi} \int\limits_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{x_{01}^2 \frac{z}{z'}} \frac{dx_{21}^2}{x_{21}^2} \frac{1}{N_c} \langle \langle \operatorname{Tr}[T^b V_0 T^a V_2^{pol\dagger}] U_1^{ba} \rangle \rangle(z')$$

Ladder Graphs:

Double logarithms

$$\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_1^{pol\,\dagger}] \rangle \rangle(z) = \frac{\alpha_s}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{01}\frac{z}{z'}} \frac{dx_{21}^2}{x_{21}^2} 2 \frac{1}{N_c} \langle \langle \operatorname{Tr}[T^b V_0 T^a V_1^{\dagger}] (U_2^{pol})^{ba} \rangle \rangle(z')$$

$$+\frac{\alpha_s}{2\pi} \int\limits_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{x_{01}^2 \frac{z}{z'}} \frac{dx_{21}^2}{x_{21}^2} \frac{1}{N_c} \langle \langle \operatorname{Tr}[T^b V_0 T^a V_2^{pol\dagger}] U_1^{ba} \rangle \rangle(z')$$

Ladder Graphs:

$$+\frac{\alpha_s}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{01}^2 \frac{z}{z'}} \frac{dx_{21}^2}{x_{21}^2} \frac{1}{N_c} \langle \langle \operatorname{Tr}[T^b V_0 T^a V_2^{pol}^{\dagger}] U_1^{ba} \rangle \rangle(z')$$

Ladder Graphs:

$$+\frac{\alpha_s}{2\pi}\int\limits_{\frac{\Lambda^2}{s}}^{z}\frac{dz'}{z'}\int\limits_{\frac{1}{z's}}^{x_{01}^{-}\overline{z'}}\frac{dx_{21}^2}{x_{21}^2}\frac{1}{N_c}\langle\langle \operatorname{Tr}[T^bV_0T^aV_2^{pol\dagger}]U_1^{ba}\rangle\rangle(z')$$
Polarized quark splitting

Polarized Non-Ladder Gluons:

$$\frac{1}{N_c} \langle \langle \mathrm{Tr}[V_0 V_1^{pol \dagger}] \rangle \rangle(z) = -\frac{\alpha_s}{2\pi} \int\limits_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int\limits_{x_{01}^2}^{x_{01}^2 \frac{z}{z'}} \frac{dx_{21}^2}{x_{21}^2} 2 \frac{1}{N_c} \langle \langle \mathrm{Tr}[T^b V_0 T^a V_1^{\dagger}] (U_2^{pol})^{ba} \rangle \rangle(z')$$
opposite sign

Polarized Non-Ladder Gluons:

Polarized Non-Ladder Gluons:

Polarized Non-Ladder Gluons:

 $\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_1^{pol \dagger}] \rangle \rangle(z) = -\frac{\alpha_s}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{x_{01}^2}^{x_{01}^2 \frac{z}{z'}} \frac{\operatorname{only in IR phase space}}{\left(\sum_{x_{01}^2} \frac{dz'}{z'} \int_{x_{01}^2}^{x_{01}^2 \frac{z}{z'}} \frac{dx_{21}^2}{x_{21}^2} \right)^2 \frac{1}{N_c} \langle \langle \operatorname{Tr}[T^b V_0 T^a V_1^{\dagger}] (U_2^{pol})^{ba} \rangle \rangle(z')$ poposite sign

Non-ladder gluons cancel the IR phase space of the ladder gluons!
 Leaves strict DGLAP-like transverse ordering for gluons
 But not for quarks....

Unpolarized Gluons

$$\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_1^{pol\dagger}] \rangle \rangle(z) = \frac{\alpha_s}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{01}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_2^{\dagger}] \operatorname{Tr}[V_2 V_1^{pol\dagger}] \rangle \rangle(z') - \langle \langle \operatorname{Tr}[V_0 V_1^{pol\dagger}] \rangle \rangle(z') \right]$$

Unpolarized Gluons

Double logarithms

$$\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_1^{pol}^{\dagger}] \rangle \rangle(z) = \frac{\alpha_s}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{01}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_2^{\dagger}] \operatorname{Tr}[V_2 V_1^{pol}^{\dagger}] \rangle \rangle(z') - \langle \langle \operatorname{Tr}[V_0 V_1^{pol}^{\dagger}] \rangle \rangle(z') \right]$$

Unpolarized Gluons

Double logarithms

$$\frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_1^{pol}^{\dagger}] \rangle \rangle(z) = \frac{\alpha_s}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{01}^2} \frac{dx_{21}^2}{x_{21}^2} \begin{bmatrix} \frac{1}{N_c} \langle \langle \operatorname{Tr}[V_0 V_2^{\dagger}] \operatorname{Tr}[V_2 V_1^{pol}^{\dagger}] \rangle \rangle(z') \\ \mathbf{BK \ Kernel} \\ - \langle \langle \operatorname{Tr}[V_0 V_1^{pol}^{\dagger}] \rangle \rangle(z') \end{bmatrix}$$

Trying to Solve It: The Large N_c Approximation

The evolution yields another infinite operator hierarchy
 ➡ Closes in the large N_c limit, like BK evolution.
 ➡ But large N_c neglects quark exchange....

Trying to Solve It: The Large N_c Approximation

• The evolution yields another infinite operator hierarchy \blacksquare Closes in the large N_c limit, like BK evolution.

 \blacksquare But large N_c neglects quark exchange....

Polarized dipoles can depend on their "neighbors"

 \blacksquare More complex than the large N_c BK equation.

Quark Helicity at Small x

 $\Gamma_{02.21}(z')$

Solving The Large N_c Approximation

$$G_{01}(z) = G_{01}^{(0)}(z) + \frac{\alpha_s N_c}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{01}^2} \frac{dx_{21}^2}{x_{21}^2} \left[2\Gamma_{02,21}(z')S_{21}(z') + 2G_{21}(z')S_{02}(z') + G_{12}(z')S_{02}(z') - \Gamma_{01,21}(z') \right]$$

$$\Gamma_{02,21}(z') = \Gamma_{02,21}^{(0)}(z') + \frac{\alpha_s N_c}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z'} \frac{dz''}{z''} \int_{\frac{1}{z''s}}^{\min[x_{02}^2, x_{21}^2 \frac{z'}{z''}]} \frac{dx_{32}^2}{x_{32}^2} \left[2\Gamma_{03,32}(z'')S_{23}(z'') + G_{23}(z'')S_{03}(z'') - \Gamma_{02,32}(z'') \right]$$

Solving The Large N_c Approximation

$$\begin{aligned} G_{01}(z) &= G_{01}^{(0)}(z) + \frac{\alpha_s N_c}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{s's}}^{x_{01}^2} \frac{dx_{21}^2}{x_{21}^2} \left[2\Gamma_{02,21}(z')S_{21}(z') + 2G_{21}(z')S_{02}(z') + G_{12}(z')S_{02}(z') - \Gamma_{01,21}(z') \right] \\ \Gamma_{02,21}(z') &= \Gamma_{02,21}^{(0)}(z') + \frac{\alpha_s N_c}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z'} \frac{dz''}{z''} \int_{\frac{1}{z''s}}^{\min[x_{02}^2, x_{21}^2 \frac{z'}{z''}]} \frac{dx_{32}^2}{x_{32}^2} \left[2\Gamma_{03,32}(z'')S_{23}(z'') + G_{23}(z'')S_{03}(z'') - \Gamma_{02,32}(z'') \right] \end{aligned}$$

- \bullet Discretize in z and $x_{\perp};$ solve iteratively for smaller values of z .
- Evolve until exponential behavior emerges with a well-defined intercept:

Solving The Large N_c Approximation

$$\begin{aligned} G_{01}(z) &= G_{01}^{(0)}(z) + \frac{\alpha_s N_c}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{s's}}^{x_{01}^2} \frac{dx_{21}^2}{x_{21}^2} \left[2\Gamma_{02,21}(z')S_{21}(z') + 2G_{21}(z')S_{02}(z') + G_{12}(z')S_{02}(z') - \Gamma_{01,21}(z') \right] \\ \Gamma_{02,21}(z') &= \Gamma_{02,21}^{(0)}(z') + \frac{\alpha_s N_c}{2\pi} \int_{\frac{\Lambda^2}{s}}^{z'} \frac{dz''}{z''} \int_{\frac{1}{z''s}}^{\min[x_{02}^2, x_{21}^2 \frac{z'}{z''}]} \frac{dx_{32}^2}{x_{32}^2} \left[2\Gamma_{03,32}(z'')S_{23}(z'') + G_{23}(z'')S_{03}(z'') - \Gamma_{02,32}(z'') \right] \end{aligned}$$

- \bullet Discretize in z and $x_{\perp};$ solve iteratively for smaller values of z .
- Evolve until exponential behavior emerges with a well-defined intercept:

$$\alpha_s = 0.3$$
 $xg_1(x, k_T^2) \sim x^{0.11}$
 $\alpha_s = 0.4$ $xg_1(x, k_T^2) \sim \left(\frac{1}{x}\right)^{0.02}$

Kovchegov, Pitonyak, & MS in preparation

• Estimates are borderline between growth / suppression at small x

Outlook: The Truth Is Out There!

• How do we reconcile our much lower intercept with the previous work which generates a strong growth at small x?

$$\alpha_s = 0.3 \div 0.4$$
 $xg_1 \sim \left(\frac{1}{x}\right)^{0.39 \div 0.60}$

Bartels, Ermolaev, & Ryskin, Z. Phys. **C70** (1996) Z. Phys. **C72** (1996),

• Can this be extended to the large N_c + N_f limit?

Outlook: The Truth Is Out There!

• How do we reconcile our much lower intercept with the previous work which generates a strong growth at small x?

$$\alpha_s = 0.3 \div 0.4$$
 $xg_1 \sim \left(\frac{1}{x}\right)^{0.39 \div 0.60}$

Bartels, Ermolaev, & Ryskin, Z. Phys. **C70** (1996) Z. Phys. **C72** (1996),

- Can this be extended to the large N_c + N_f limit?
- What is the role of nonlinear saturation effects?
 - Does multiple unpolarized scattering further reduce the intercept?
 - Does saturation keep the IR sector from becoming nonperturbative?

Outlook: The Truth Is Out There!

• How do we reconcile our much lower intercept with the previous work which generates a strong growth at small x?

$$\alpha_s = 0.3 \div 0.4$$
 $xg_1 \sim \left(\frac{1}{x}\right)^{0.39 \div 0.60}$

Bartels, Ermolaev, & Ryskin, Z. Phys. **C70** (1996) Z. Phys. **C72** (1996),

- Can this be extended to the large N_c + N_f limit?
- What is the role of nonlinear saturation effects?
 - Does multiple unpolarized scattering further reduce the intercept?
 - Does saturation keep the IR sector from becoming nonperturbative?

• What about other polarization observables?

Summary

- Up to 35% of the proton angular momentum is unaccounted for.
 - Is there significant polarization at small x?

0.001 < x < 1 $\Delta \Sigma \approx 0.25 \ (25\%)$ $\Delta G \approx 0.2 \ (40\%)$

Summary

- Up to 35% of the proton angular momentum is unaccounted for.
 - Is there significant polarization at small x?

0.001 < x < 1 $\Delta \Sigma \approx 0.25 \ (25\%)$ $\Delta G \approx 0.2 \ (40\%)$

- Quark / gluon splitting leads to rich double-logarithmic evolution equations
 - \Rightarrow Slows down the decrease at small x

Summary

- Up to 35% of the proton angular momentum is unaccounted for.
 - Is there significant polarization at small x?

0.001 < x < 1 $\Delta \Sigma \approx 0.25 \ (25\%)$ $\Delta G \approx 0.2 \ (40\%)$

 Quark / gluon splitting leads to rich double-logarithmic evolution equations

 \Rightarrow Slows down the decrease at small x

• We estimate behavior on the borderline between weak suppression and weak growth at small x.

 $\alpha_s = 0.3 \div 0.4$

$$xg_1 \sim \left(\frac{1}{x}\right)^{0.02} \div x^{0.11}$$