# Summary of the Parallel Sessions:

Nuclear Structure at Large and Small x
Nucleon Structure and Interactions

Matthew D. Sievert



# Saturday July 9, 2016

EIC User Group Meeting 2016



July 9, 2016

M. Sievert

Parallel Summary III

# Our Charge as Conveners

- Solicit contributions from experts in the field to present recent work which builds the science case for the EIC, beyond the scope of the White Paper...
  - Subsequent developments

➡New ideas

- ...with possible bearing on the pending NAS review:
  - →What is the merit and significance of the science?
  - What is its importance in the overall context of nuclear physics research?
  - What are the benchmarks of interest to the broader scientific community?
  - What is the value proposition to society?

### **Contributed Talks**

# Nuclear Structure at Large and Small x

- V. Skokov Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy
- A. Tarasov Rapidity Factorization Approach and EIC
- M. Sievert Quark Helicity at Small x
- R. Ent Nuclear Structure at Large x with an EIC

# Nucleon Structure and Interactions

- D. Sokhan Opportunities for Studying GPDs at the EIC
- C. Mezrag GPDs and the PARTON Software Project
- C.Weiss Exploring Nucleon-Nucleon Interactions in QCD with EIC
- O. Hen Bound Nucleon Structure Studies with an EIC

# Nuclear Structure at Large and Small x

V. Skokov

A. Tarasov

M. Sievert

R. Ent



Parallel Summary III



# Rapidity factorization approach and EIC

Andrey Tarasov Electron Ion Collider User Group Meeting 2016, July 8, 2016





# PARTICLE PRODUCTION AT EIC

Scalar particle production (toy model, same approach can be applied to any observable):

$$S_{\Phi} = \lambda \int d^4 z \ F^a_{\mu\nu}(z) F^{a\mu\nu}(z) \Phi(z)$$

Rapidity Factorization - separation in rapidity:

$$p^{\mu} = \alpha p_1^{\mu} + \beta p_2^{\mu} + p_{\perp}^{\mu}$$

$$A \to A|_{\alpha > \sigma} + A|_{\alpha < \sigma}$$
  
Rapidity cutoff

 $p_2$ 

 $p_1$ 

8

# **RAPIDITY FACTORIZATION**





# INTERMEDIATE REGIME



### Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy

Vladimir Skokov (RBRC BNL)

#### July 8, 2016

A. Dumitru, T. Lappi and V. S. Phys. Rev. Lett. 115 (2015) 25, 252301

A. Dumitru and V. S., arXiv:1605.02739

A. Dumitru, V. S. and T. Ullrich, work in progress

#### DIJET PRODUCTION IN DIS AT SMALL X



- DIS dijet production:  $\gamma^* A \rightarrow q \bar{q} X$
- Multiple scatterings of (anti) quark are accounted for by ressumation:

$$U(\mathbf{x}) = \mathbb{P} \exp\left\{ ig \int dx^{-}A^{+}(x^{-}, \mathbf{x}_{\perp}) \right\}$$

• In color dipole model this process corresponds to

$$\begin{aligned} \frac{d\sigma^{\gamma^* A \to q\bar{q}\chi}}{d^3k_1 d^3k_2} &= \\ N_c \alpha_{em} e_q^2 \delta(p^+ - k_1^+ - k_2^+) \int \frac{d^2 x_1}{(2\pi)^2} \frac{d^2 x_2}{(2\pi)^2} \frac{d^2 y_1}{(2\pi)^2} \frac{d^2 y_2}{(2\pi)^2} \exp\left(-i\mathbf{k}_1(\mathbf{x}_1 - \mathbf{y}_1) - i\mathbf{k}_2(\mathbf{x}_2 - \mathbf{y}_2)\right) \\ &\sum_{\gamma \alpha \beta} \psi_{\alpha \beta}^{\mathrm{T,L}\gamma}(\mathbf{x}_1 - \mathbf{x}_2) \psi_{\alpha \beta}^{\mathrm{T,L}\gamma*}(\mathbf{y}_1 - \mathbf{y}_2) \left[1 + \frac{1}{N_c} \left(\langle \mathrm{Tr} \ U(\mathbf{x}_1) U^{\dagger}(\mathbf{y}_1) U(\mathbf{y}_2) U^{\dagger}(\mathbf{x}_2) \right) - \langle \mathrm{Tr} \ U(\mathbf{y}_1) U^{\dagger}(\mathbf{y}_2) \rangle \right] \uparrow \text{Quadrupole contribution} \end{aligned}$$

Splitting wave function of γ\* with longitudinal momentum p<sup>+</sup> and virtuality Q<sup>2</sup>
This expression can be computed without any further simplifications with quadrupole, but no direct relation to TMD result

VSKOKOV@BNL.GOV

#### DIJET CROSS SECTION

#### DiJet cross section to this order

$$\begin{aligned} \frac{d\sigma^{\gamma_{T}^{A} \to q\bar{q}\bar{\chi}}}{d^{2}k_{1}dz_{1}d^{2}k_{2}dz_{2}} \\ &= \alpha_{s}\alpha_{em}e_{q}^{2}\left(z_{1}^{2} + z_{2}^{2}\right)\left[\frac{P^{4} + \epsilon_{f}^{4}}{(P^{2} + \epsilon_{f}^{2})^{4}}\left(xG^{(1)}(x,q^{2}) - \frac{2\epsilon_{f}^{2}P^{2}}{P^{4} + \epsilon_{f}^{4}}xh^{(1)}(x,q^{2})\cos 2\phi + O\left(\frac{1}{P^{2}}\right)\right)\right. \\ &\left. - \frac{48\epsilon_{f}^{2}P^{4}}{\sqrt{2}\left(P^{2} + \epsilon_{f}^{2}\right)^{6}}\Phi_{2}(x,q^{2})\cos 4\phi\right] \\ \frac{d\sigma^{\gamma_{L}^{*}A \to q\bar{q}\bar{\chi}}}{d^{2}k_{1}dz_{1}d^{2}k_{2}dz_{2}} \\ &= 8\alpha_{s}\alpha_{em}e_{q}^{2}z_{1}z_{2}\epsilon_{f}^{2}\left[\frac{P^{2}}{(P^{2} + \epsilon_{f}^{2})^{4}}\left(xG^{(1)}(x,q^{2}) + xh^{(1)}(x,q^{2})\cos 2\phi + O\left(\frac{1}{P^{2}}\right)\right) \\ &\left. + \frac{48P^{4}}{\sqrt{2}\left(P^{2} + \epsilon_{f}^{2}\right)^{6}}\Phi_{2}(x,q^{2})\cos 4\phi\right] \end{aligned}$$

A. Dumitru and V. S., arXiv:1605.02739

#### Small x evolution



Reminder of McLerran-Venugopalan model results

$$\begin{split} sh_{\perp}^{(1)} &= \frac{S_{\perp}}{2\pi^3 \alpha_s} \frac{N_c^2 - 1}{N_c} \int_0^{\infty} drr \frac{J_2(q_{\perp}r)}{r^2 \ln \frac{1}{r^2} \lambda^2} \left( 1 - \exp\left(-\frac{1}{4}r^2 Q_s^2\right) \right) \\ & xG^{(1)} &= \frac{S_{\perp}}{2\pi^3 \alpha_s} \frac{N_c^2 - 1}{N_c} \int_0^{\infty} drr \frac{J_2(q_{\perp}r)}{r^2} \left( 1 - \exp\left(-\frac{1}{4}r^2 Q_s^2\right) \right) \\ & \text{Large } q_{\perp} \gg Q_s : sh_{\perp}^{(1)} &= xG^{(1)} \propto 1/q_{\perp}^2 \\ & \text{Small } q_{\perp} \ll Q_s : sh_{\perp}^{(1)} \propto q_{\perp}^0 \quad xG^{(1)} \propto \ln \frac{Q_s^2}{q_{\perp}^2} \end{split}$$

 at large q<sub>⊥</sub>, saturation of positivity bound h<sup>(1)</sup><sub>⊥</sub> → G<sup>(1)</sup>, as also was found in pert. twist 2 calculations of small x field of fast quark

- at small  $q_{\perp}, h_{\perp}^{(1)}/G^{(1)} \rightarrow 0$
- both functions decrease fast as functions of  $q_{\perp}$ : best measured when  $q_{\perp} \approx Q_s$ . Nuclear target!

A. Dumitru, T. Lappi and V. S. Phys. Rev. Lett. 115 (2015) 25, 252301

#### MV RESULTS



These functions determine the amplitudes of the  $\cos 2n\phi$  contributions to the dijet angular distributions for n = 0, 1, 2, respectively.

A. Dumitru and V. S., arXiv:1605.02739

# Quark Helicity at Small x

# Matthew D. Sievert

with Daniel Pitonyak

and Yuri Kovchegov



# Friday July 8, 2016

EIC User Group Meeting 2016



# **Constructing Polarized Splitting Kernels**



• Kernels: Spin-dependent quark / gluon wave functions  $\rightarrow$  Soft quarks and soft gluons can mix (same order)

 Requires longitudinal ordering and lifetime ordering  $\frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \cdots$  $1 \gg z_1 \gg z_2 \gg \cdots \gg x$ 

Includes "infrared" phase space:  $k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}$ 

 $\alpha_s \ln^2 \frac{1}{r} \sim 1$ 

Leads to double-log evolution.

 $\rightarrow$  Faster evolution than unpolarized BK!

Quark Helicity at Small x

# Contributions to Small-x Helicity Evolution





Quark Helicity at Small x

# Summary

- Up to 35% of the proton angular momentum is unaccounted for.
  - Is there significant polarization at small x?

0.001 < x < 1 $\Delta \Sigma \approx 0.25 \ (25\%)$  $\Delta G \approx 0.2 \ (40\%)$ 



 Quark / gluon splitting leads to rich double-logarithmic evolution equations

 $\Rightarrow$  Slows down the decrease at small x

• We estimate behavior on the borderline between weak suppression and weak growth at small x.

 $\alpha_s = 0.3 \div 0.4$ 

$$xg_1 \sim \left(\frac{1}{x}\right)^{0.02} \div x^{0.11}$$



### Determining Large x PDFs at JLEIC – a work in progress $2^{12}$



EIC Users Group Meeting Argonne National Lab, July 2016



CJ15 (T = 10)

1.6

### g(x) is poorly known at large (and small) x...



### 100/fb luminosity



- d quark precision will become comparable to current u!!
- CJ15
   CJ15+F2p
   CJ15+F2p+F2ntag
   CJ15+F2p+F2ntag+F2d
  - The u quark uncertainty becomes less than ~1%; may be important for large mass BSM new particles.
  - With d quark nailed by F<sub>2</sub><sup>n</sup>, fitting F<sub>2</sub><sup>d</sup> data will explore details of nuclear effects

Jefferson Lab

### Improved g(x) precision also good news

- The gluons improve by a bit less than 10% per data set included, with the improvement seemingly independent of luminosity
  - Possibly gluons are accessed by the  $F_2$  shape in  $Q^2$ , so that the precision of each data point is not very important, while the lever arm in  $Q^2$  matters most
- If true, expect that adding new measurements we will continue to improve the gluons: for example, adding energy scans at 3+100 and 6+100 may reach a global improvement in the large-x gluons closer to 80%.
- Energy scans could also allow for direct access of gluons from  $F_L$ .
- Need more work to confirm above





# Summary: Nuclear Structure at Large and Small x

- Unified picture of high-energy particle production which bridges DGLAP evolution, TMD evolution, and small-x evolution
- New quantitative predictions for linearly polarized gluons and azimuthal modulations at small x, including evolution.
- Novel small-x dynamics govern helicity distributions at small x and may make an important contribution to the proton spin.
- New study: spectator tagging at the EIC can constrain large-x PDFs so well that they can discriminate between models for nuclear corrections.

# Nucleon Structure and Interactions

D. Sokhan

C. Mezrag

C.Weiss

O. Hen



Parallel Summary III

July 9, 2016





# Towards Generalised Parton Distributions at the Electron Ion Collider



Derek Leinweber

# Daria Sokhan

University of Glasgow, UK

EIC User Group Meeting, Argonne National Lab, USA – 8 July 2016



# **Generalised Parton Distributions**

- **\* Tomography** of the nucleon: transverse spacial distributions of quarks and gluons in longitudinal momentum space.
- \* Information on **spin-orbit correlations** and the orbital angular momentum contribution to nucleon spin: **the spin puzzle**.
- \* Accessible in:
  - \* Deeply Virtual Compton Scattering (DVCS)
  - \* Deeply Virtual Meson Production (DVMP)
  - \* Time-like Compton Scattering (TCS)
  - ✤ Double DVCS



- \* Four GPDs (at LO) accessible in DVCS:  $E^q, \tilde{E}^q, H^q, \tilde{H}^q(x, \xi, t)$
- \* Additional four transversity GPDs in DVMP:  $E_T^q, \tilde{E}_T^q, H_T^q, \tilde{H}_T^q(x, \xi, t)$

Ji's relation: 
$$J^{q} = \frac{1}{2} - J^{g} = \frac{1}{2} \int_{-1}^{1} x dx \left\{ H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right\}$$



# Accessing GPDs

DVCS accessible mainly through interference term with Bethe-Heitler.



\* Cross-sections, spin asymmetries parametrised in terms of Compton Form Factors: complex functions whose real and imaginary parts are related to GPD integrals or values of GPDs at certain kinematics. Need polarised beams!

- \* Momentum fraction *x* not directly accessible in DVCS, DVMP or TCS, but *can* be accessed in Double-DVCS.
- **\* Flavour separation**: DVCS off proton and neutron, DVMP.
- \* Exclusive measurements from Jefferson Lab and HERMES provided validation of the GPD formalism and glimpses of nucleon structure in the valence region: e.g., CFF slope in -t becomes shallower at higher x<sub>B</sub>, suggests valence quarks might be more centrally located than sea ones.



# GPDs @ EIC



- **\* DVMP** Flavour-separation, clearer access to gluon GPDs in  $J/\Psi$  production, separation of longitudinal and transverse photon polarisation cross-sections, differences in q and  $\bar{q}$  distributions.
- **\* DDVCS** Direct access to *x*-dependence of GPDs.
- Measurements off other hadrons (virtual pions, light nuclei) parton saturation, flavour-separation, short-range
   A correlations.

\* EIC is crucial in exploring nucleon structure at the level of sea quarks and gluons; it needs to have high luminosity, high polarisations, full acceptance detectors, a range of CM energies and nucleon and nuclear beams.



Predictions for VGG (red) and GK11 (blue): PARTONS project (L. Colaneri, N. Chouica).

\* Model predictions vital to inform and guide EIC design!



Generalised Parton Distributions and the PARTONS project

C. Mezrag

Argonne National Laboratory

On behalf of the PARTONS team





### Computing chain design.

Differential studies: physical models and numerical methods.





### Towards the first beta release

Where we are now



#### Design

- the first release will be restrained to DVCS only, but will cover a kinematical range from JLab to EIC,
- four different GPD models based on Double Distributions will be provided,
- the BMJ (Nucl. Phys. B878, 214 (2014)) formalism will be used for computations of observables,
- both LO and NLO kernels will be available for the computation of CFFs, including computations with heavy flavours,
- evolution will be available at fixed flavour number,
- only leading twist approximation will be available.
- Validation
  - ▶ Non-regression tests have been systematically performed over **200,000** GPD kinematics (x,  $\xi$ , t,  $\mu_R$ ,  $\mu_F$ ).

#### Performance

With two threads, it is now possible to compute 500,000 GPD kinematics per second with the Goloskokov-Kroll model.

C. Mezrag (ANL)

#### PARTONS

### Towards the first beta release $_{\mbox{\sc Expected FAQ}}$



- What will be released?
  - Release will take the form of a virtual machine, including ready-to-use IDE and mySQL Database.
  - Binaries and headers will be available, but not the source code.

#### • When is the release planned?

- Extensive tests of evolution module and database transactions have still to be performed.
- The first beta release is expected this summer.

#### • I am afraid to be lost in the code, where can I find help?

- We plan to release also various examples to help new users.
- A documentation will be also available online.

#### • What if I find a bug?

- We try to make the software as reliable as possible. But if you still find a bug please contact us.
- We will face the good side of Murphy's law: users will find a way to use PARTONS developers will not have thought about.

#### PARTONS

### Probing nucleon interactions in QCD with EIC

C. Weiss (JLab), EIC User Group Meeting, ANL, 7-9 July, 2016 Jefferson Lab

Unifying perspective on ep and eA physics
 Include large – intermediate – small x
 Adopt rest frame view: Longitudinal structure, nuclear physics intuition
 Focus on dynamical system, not formal descriptors

### • EIC measurements exploring nucleon interactions

- x > 0.3 Gluon suppression in nuclei? Gluonic EMC effect? Modified nucleon structure
- $x\sim 0.1$  Sea quark and gluon enhancement? Charge–flavor separation? QCD structure of exchange interactions
- x < 0.01 Emergence of collective gluon fields shadowing, saturation High-energy nucleon interactions, diffraction

How do nuclei emerge from the microscopic theory of strong interactions?

### **Nucleon interactions:** $A \neq \sum N$



x > 0.3 "EMC effect" Modified single-nucleon stucture? Non-nucleonic degrees of freedom?

 $x\sim 0.1$  "Antishadowing" QCD structure of pairwise NN interaction, exchange mechanisms

x < 0.01 "Shadowing" QM interference, collective gluon fields

- Nuclear modification of quark/gluon structure reveals QCD origin of nucleon interactions
- Distinct dynamical mechanisms in different regions of x
- Alternative viewpoint: Coherence length of DIS process  $l_{
  m coh} \sim 1/(M_N x)$

### **EIC:** Nuclear gluons at x > 0.3





• Are gluons suppressed at x > 0.3? Cf. Valence quarks: EMC effect, JLab 6 & 12 GeV

Modification of nucleon's gluonic structure due to interactions?

Non-nucleonic DOF in nucleus?

- Poorly known: Global fits
- EIC: Nuclear gluons from inclusive  $F_{2A}$ ,  $F_{LA}$  and DGLAP evolution

Limited sensitivity to large x

• EIC: Nuclear gluons with heavy quarks Direct probe, unique sensitivity Used in HERA ep at  $x_B < 0.01$ 

EIC enables eA at large  $x_B$ 

### **EIC:** Nuclear quarks and antiquarks at $x \sim 0.1$





quark exchange

meson exchange



• Are quarks and/or antiquarks in nuclei enhanced at  $x\sim 0.1?$ 

7

NN interaction by quark or meson exchange?

Flavor decomposition?

• EIC: Charge-flavor separation with semi-inclusive  $\pi, K$ 

Extensive experience with  $e \boldsymbol{p}$ 

 $eA\colon$  Separate initial-state modifications from nuclear final-state interactions using A--dependence

• Simulations in progress Zhihong Ye, D. Higinbotham, CW

# Bound Nucleon Structure Studies with an EIC



### Or Hen MIT





### Electron Ion Collider EIC Users Group Meeting, ANL, July 8<sup>th</sup>, 2016





### From Black Holes to Neutron Stars



### $M(PSR J1614-2230) = 1.97 \pm 0.04 M_{\odot}$

### $M(PSR J0348+0432)=2.01 \pm 0.04 M_{\odot}$

P. B. Demorest et al., Nature 467 (2010) John Antoniadis et al., Science 340 (2013)

- Formation of our universe: r-process nuclear-synthesis is likely due to n. stars merges
- 2. Fundamental nature of gravity: n. stars are a unique lab for testing models of gravitymatter couplings in the strong-field regime.

=> Requires input on <u>COLD dense nuclear matter</u> in small gravitational fields (e.g. <u>on earth</u>).

# Universal structure of nuclear momentum distributions



# Importance of SRC Properties





# Summary: Nucleon Structure and Interactions

- Validation of the GPD formalism in the valence region allows tomography of sea quarks and gluons at the EIC.
- New software suite empowers the community to explore GPD model space by automating the computation of observables.
- Unified picture of nuclear structure across length scales bridges the EMC effect, NN scattering, and nuclear shadowing.
- Universal nuclear momentum distributions links fields of physics from the EMC effect to cold atomic gases to neutron stars.